Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-922091

RESUMO

Development of thoracolumbar vertebra (TLV) and rib primordium (RP) is a common evolutionary feature across vertebrates, although whole-organism analysis of the expression dynamics of TLV- and RP-related genes has been lacking. Here, we investigated the single-cell transcriptome landscape of thoracic vertebra (TV), lumbar vertebra (LV), and RP cells from a pig embryo at 27 days post-fertilization (dpf) and identified six cell types with distinct gene expression signatures. In-depth dissection of the gene expression dynamics and RNA velocity revealed a coupled process of osteogenesis and angiogenesis during TLV and RP development. Further analysis of cell type-specific and strand-specific expression uncovered the extremely high level of HOXA10 3'-UTR sequence specific to osteoblasts of LV cells, which may function as anti-HOXA10-antisense by counteracting the HOXA10-antisense effect to determine TLV transition. Thus, this work provides a valuable resource for understanding embryonic osteogenesis and angiogenesis underlying vertebrate TLV and RP development at the cell type-specific resolution, which serves as a comprehensive view on the transcriptional profile of animal embryo development.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-242263

RESUMO

Understanding the mutational and evolutionary dynamics of SARS-CoV-2 is essential for treating COVID-19 and the development of a vaccine. Here, we analyzed publicly available 15,818 assembled SARS-CoV-2 genome sequences, along with 2,350 raw sequence datasets sampled worldwide. We investigated the distribution of inter-host single nucleotide polymorphisms (inter-host SNPs) and intra-host single nucleotide variations (iSNVs). Mutations have been observed at 35.6% (10,649/29,903) of the bases in the genome. The substitution rate in some protein coding regions is higher than the average in SARS-CoV-2 viruses, and the high substitution rate in some regions might be driven to escape immune recognition by diversifying selection. Both recurrent mutations and human-to-human transmission are mechanisms that generate fitness advantageous mutations. Furthermore, the frequency of three mutations (S protein, F400L; ORF3a protein, T164I; and ORF1a protein, Q6383H) has gradual increased over time on lineages, which provides new clues for the early detection of fitness advantageous mutations. Our study provides theoretical support for vaccine development and the optimization of treatment for COVID-19. We call researchers to submit raw sequence data to public databases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...