Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21253834

RESUMO

The risk factors for development of fibrotic interstitial lung abnormalities (ILA) after severe COVID-19 are incompletely described and the extent to which CT findings correlate with symptoms and physical function after hospitalization remain unclear. At 4 months after hospitalization, fibrotic ILA was more common in those who underwent mechanical ventilation (72%) than in those who did not (20%). We demonstrate that severity of initial illness, duration of mechanical ventilation, lactate dehydrogenase on admission, and leukocyte telomere length are independent risk factors for fibrotic ILA. These fibrotic changes correlate with lung function, cough and measures of frailty, but not with dyspnea.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-433824

RESUMO

SARS-CoV-2 and its induced COVID-19 remains as a global health calamity. Severe symptoms and high mortality, caused by cytokine storm and acute respiratory distress syndrome in the lower respiratory airway, are always associated with elderly individuals and those with comorbidities; whereas mild or moderate COVID-19 patients have limited upper respiratory flu-like symptoms. There is an urgent need to investigate SARS-CoV-2 and other coronaviruses replication and immune responses in human respiratory systems. The human reconstituted airway epithelial air-liquid interface (ALI) models are the most physiologically relevant model for the investigation of coronavirus infection and virus-triggered innate immune signatures. We established ALI models representing both the upper and the lower respiratory airway to characterize the coronavirus infection kinetics, tissue pathophysiology, and innate immune signatures from upper and lower respiratory tract perspective. Our data suggested these in vitro ALI models maintain high physiological relevance with human airway tissues. The coronavirus induced immune response observed in these upper and lower respiratory airway models are similar to what has been reported in COVID-19 patients. The antiviral efficacy results of a few promising anti-coronavirus drugs in these models were consistent with previous reports and could be valuable for the human dose prediction. Taken together, our study demonstrates the importance of 3D airway epithelial ALI model for the understanding of coronavirus pathogenesis and the discovery and development of anti-coronavirus drugs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...