Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pain ; : 104470, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38232863

RESUMO

Oxaliplatin-induced peripheral neuropathy (OIPN) is a dose-limiting toxicity characterised by mechanical allodynia and thermal hyperalgesia, without any licensed medications. ART26.12 is a fatty acid-binding protein (FABP) 5 inhibitor with antinociceptive properties, characterised here for the prevention and treatment of OIPN. ART26.12 binds selectively to FABP5 compared to FABP3, FABP4, and FABP7, with minimal off-target liabilities, high oral bioavailability, and a NOAEL of 1,000 mg/kg/day in rats and dogs. In an established preclinical OIPN model, acute oral dosing (25-100 mg/kg) showed a cannabinoid receptor type 1 (CB1)-dependent anti-allodynic effect lasting up to 8 hours (persisting longer than plasma exposure to ART26.12). Antagonists of cannabinoid receptor type 2 (CB2), peroxisome proliferator-activated receptor alpha, and transient receptor potential cation channel subfamily V member 1 (TRPV1) may have also been implicated. Twice daily oral dosing (25 mg/kg bis in die (BID) for 7 days) showed anti-allodynic effects in an established OIPN model without the development of tolerance. In a prevention paradigm, coadministration of ART26.12 (10 and 25 mg/kg BID for 15 days) with oxaliplatin prevented thermal hyperalgesia, mitigated mechanical allodynia, and attenuated OXA-induced weight loss. Multi-scale analyses revealed widespread lipid modulation, particularly among N-acyl amino acids in the spinal cord, including potential analgesic mediators. Additionally, ART26.12 administration led to upregulation of ion channels in the periaqueductal grey, and broad translational upregulation within the plasma proteome. These results show promise that ART26.12 is a safe and well-tolerated candidate for the treatment and prevention of OIPN through lipid modulation. PERSPECTIVE: Inhibition of fatty acid-binding protein 5 (FABP5) is a novel target for reducing pain associated with chemotherapy. ART26.12 is a safe and well-tolerated small molecule FABP5 inhibitor effective at preventing and reducing pain induced with oxaliplatin through lipid modulation and activation of cannabinoid receptors.

2.
Pain ; 164(11): 2477-2490, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37390363

RESUMO

ABSTRACT: Osteoarthritis (OA), the most common joint disorder worldwide, is characterized by progressive degeneration of articular and periarticular structures, leading to physical and emotional impairments that greatly affect the quality of life of patients. Unfortunately, no therapy has been able to halt the progression of the disease. Owing to the complexity of OA, most animal models are only able to mimic a specific stage or feature of the human disorder. In this work, we demonstrate the intraarticular injection of kaolin or carrageenan leads to the progressive degeneration of the rat's knee joint, accompanied by mechanical hyperalgesia and allodynia, gait impairments (reduced contact area of the affected limb), and radiological and histopathological findings concomitant with the development of human grade 4 OA. In addition, animals also display emotional impairments 4 weeks after induction, namely, anxious and depressive-like behaviour, important and common comorbidities of human OA patients. Overall, prolonging kaolin or carrageenan-induced monoarthritis mimics several important physical and psychological features of human OA in both male and female rodents and could be further applied in long-term studies of OA-associated chronic pain.

3.
Curr Opin Support Palliat Care ; 13(2): 107-110, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30883401

RESUMO

PURPOSE OF REVIEW: There is a clear unmet need for either the development of new drugs for the treatment of painful pathologies or the better use of the existing agents denoted by the lack of efficacy of many existing drugs in a number of patients, limitations of their use due to severity of side effects, and by the high number of drugs that fail to reach clinical efficacy from preclinical development. This account considers the efforts being made to better validate new analgesic components and to improve translational efficacy of existing drugs. RECENT FINDINGS: A better use of the available models and tools can improve the predictive validity of new analgesic drugs, as well as using intermediate steps when translating drugs to clinical context such as characterizing drugs using stem cell-sensory derived neurones. Profiling patient sensory phenotypes can decrease the number of failed clinical trials and improve patient outcome. SUMMARY: An integrative approach, comprising the use of complementary techniques to fully characterize drug profiles, is necessary to improve translational success of new analgesics.


Assuntos
Analgésicos/uso terapêutico , Desenvolvimento de Medicamentos/organização & administração , Dor/tratamento farmacológico , Analgésicos/administração & dosagem , Analgésicos/efeitos adversos , Animais , Ensaios Clínicos como Assunto , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Transtornos da Percepção/genética , Transtornos da Percepção/fisiopatologia
4.
Neuroscience ; 349: 341-354, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28300633

RESUMO

Metabotropic glutamate receptor 5 (mGluR5) activation in the infralimbic cortex (IL) induces pronociceptive behavior in healthy and monoarthritic rats. Here we studied whether the medullary dorsal reticular nucleus (DRt) and the spinal TRPV1 are mediating the IL/mGluR5-induced spinal pronociception and whether the facilitation of pain behavior is correlated with changes in spinal dorsal horn neuron activity. For drug administrations, all animals had a cannula in the IL as well as a cannula in the DRt or an intrathecal catheter. Heat-evoked paw withdrawal was used to assess pain behavior in awake animals. Spontaneous and heat-evoked discharge rates of single DRt neurons or spinal dorsal horn wide-dynamic range (WDR) and nociceptive-specific (NS) neurons were evaluated in lightly anesthetized animals. Activation of the IL/mGluR5 facilitated nociceptive behavior in both healthy and monoarthritic animals, and this effect was blocked by lidocaine or GABA receptor agonists in the DRt. IL/mGluR5 activation increased spontaneous and heat-evoked DRt discharge rates in healthy but not monoarthritic rats. In the spinal dorsal horn, IL/mGluR5 activation increased spontaneous activity of WDR neurons in healthy animals only, whereas heat-evoked responses of WDR and NS neurons were increased in both experimental groups. Intrathecally administered TRPV1 antagonist prevented the IL/mGluR5-induced pronociception in both healthy and monoarthritic rats. The results suggest that the DRt is involved in relaying the IL/mGluR5-induced spinal pronociception in healthy control but not monoarthritic animals. Spinally, the IL/mGluR5-induced behavioral heat hyperalgesia is mediated by TRPV1 and associated with facilitated heat-evoked responses of WDR and NS neurons.


Assuntos
Córtex Cerebral/fisiopatologia , Hiperalgesia/fisiopatologia , Dor/fisiopatologia , Receptor de Glutamato Metabotrópico 5/metabolismo , Animais , Comportamento Animal/fisiologia , Córtex Cerebral/metabolismo , Masculino , Neurônios/metabolismo , Ratos Wistar , Medula Espinal/metabolismo , Medula Espinal/microbiologia , Medula Espinal/fisiopatologia
5.
Nat Commun ; 7: 11829, 2016 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-27337658

RESUMO

Striatal dopamine receptor D1-expressing neurons have been classically associated with positive reinforcement and reward, whereas D2 neurons are associated with negative reinforcement and aversion. Here we demonstrate that the pattern of activation of D1 and D2 neurons in the nucleus accumbens (NAc) predicts motivational drive, and that optogenetic activation of either neuronal population enhances motivation in mice. Using a different approach in rats, we further show that activating NAc D2 neurons increases cue-induced motivational drive in control animals and in a model that presents anhedonia and motivational deficits; conversely, optogenetic inhibition of D2 neurons decreases motivation. Our results suggest that the classic view of D1-D2 functional antagonism does not hold true for all dimensions of reward-related behaviours, and that D2 neurons may play a more prominent pro-motivation role than originally anticipated.


Assuntos
Motivação/fisiologia , Núcleo Accumbens/fisiologia , Receptores de Dopamina D2/metabolismo , Animais , Cocaína/farmacologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Genes Transgênicos Suicidas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Motivação/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Ratos , Receptores de Dopamina D2/genética , Recompensa
6.
PLoS One ; 9(11): e113077, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25405608

RESUMO

INTRODUCTION: In chronic pain disorders, galanin (GAL) is able to either facilitate or inhibit nociception in the spinal cord but the contribution of supraspinal galanin to pain signalling is mostly unknown. The dorsomedial nucleus of the hypothalamus (DMH) is rich in galanin receptors (GALR) and is involved in behavioural hyperalgesia. In this study, we evaluated the contribution of supraspinal GAL to behavioural hyperalgesia in experimental monoarthritis. METHODS: In Wistar-Han males with a four week kaolin/carrageenan-induced monoarthritis (ARTH), paw-withdrawal latency (PWL) was assessed before and after DMH administration of exogenous GAL, a non-specific GALR antagonist (M40), a specific GALR1 agonist (M617) and a specific GALR2 antagonist (M871). Additionally, the analysis of c-Fos expression after GAL injection in the DMH was used to investigate the potential involvement of brainstem pain control centres. Finally, electrophysiological recordings were performed to evaluate whether pronociceptive On- or antinociceptive Off-like cells in the rostral ventromedial medulla (RVM) relay the effect of GAL. RESULTS: Exogenous GAL in the DMH decreased PWL in ARTH and SHAM animals, an effect that was mimicked by a GALR1 agonist (M617). In SHAM animals, an unselective GALR antagonist (M40) increased PWL, while a GALR2 antagonist (M871) decreased PWL. M40 or M871 failed to influence PWL in ARTH animals. Exogenous GAL increased c-Fos expression in the RVM and dorsal raphe nucleus (DRN), with effects being more prominent in SHAM than ARTH animals. Exogenous GAL failed to influence activity of RVM On- or Off-like cells of SHAM and ARTH animals. CONCLUSIONS: Overall, exogenous GAL in the DMH had a pronociceptive effect that is mediated by GALR1 in healthy and arthritic animals and is associated with alterations of c-Fos expression in RVM and DRN that are serotonergic brainstem nuclei known to be involved in the regulation of pain.


Assuntos
Artrite/complicações , Galanina/farmacologia , Hiperalgesia/metabolismo , Hipotálamo/metabolismo , Transdução de Sinais/efeitos dos fármacos , Análise de Variância , Animais , Artrite/induzido quimicamente , Carragenina/efeitos adversos , Potenciais Somatossensoriais Evocados/fisiologia , Hiperalgesia/etiologia , Caulim/efeitos adversos , Masculino , Proteínas Proto-Oncogênicas c-fos , Ratos , Ratos Wistar , Tempo de Reação/efeitos dos fármacos
7.
Brain Res Bull ; 99: 100-8, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24121166

RESUMO

The dorsomedial nucleus of the hypothalamus (DMH) has been proposed to participate in stress-induced hyperalgesia through facilitation of pronociceptive cells in the rostroventromedial medulla (RVM). We hypothesized that the DMH participates in hyperalgesia induced by arthritis. The DMH was pharmacologically manipulated while assessing heat-evoked nociceptive behavior or the discharge rates of pronociceptive RVM ON- and antinociceptive RVM OFF-like cells in NAIVE, SHAM and monoarthritic (ARTH) animals. In NAIVE and SHAM animals, the changes in nociceptive behavior induced by activation of the DMH by glutamate and inhibition by lidocaine were in line with earlier evidence indicating that the DMH has a nociceptive facilitating role. However, in ARTH animals, neither activation nor inhibition of the DMH influenced pain-like behavior evoked by stimulation of an uninflamed skin region (paw and tail). In accordance with these behavioral results, activation or inhibition of the DMH induced pronociceptive changes in the discharge rates of RVM cells in NAIVE and SHAM animals, which suggests that the DMH has a pronociceptive role mediated by the RVM in normal animals. However, in ARTH animals, both glutamate and lidocaine in the DMH failed to influence either pain-like behavior or noxious stimulation-evoked responses of RVM cells, while blocking the DMH increased spontaneous activity in the pronociceptive RVM ON cells. Our data indicate that the DMH participates in descending facilitation of cutaneous nociception in healthy controls, but it is not engaged in the regulation of cutaneous nociception in monoarthritic animals, while a minor role in tonic suppression of nociception in arthritis cannot be discarded.


Assuntos
Núcleo Hipotalâmico Dorsomedial/fisiologia , Hiperalgesia/patologia , Nociceptores/fisiologia , Limiar da Dor/fisiologia , Animais , Artrite/induzido quimicamente , Artrite/complicações , Bicuculina/farmacologia , Carragenina/toxicidade , Modelos Animais de Doenças , Núcleo Hipotalâmico Dorsomedial/efeitos dos fármacos , Núcleo Hipotalâmico Dorsomedial/patologia , Interações Medicamentosas , Antagonistas de Receptores de GABA-A/farmacologia , Hiperalgesia/etiologia , Masculino , Bulbo , Vias Neurais/efeitos dos fármacos , Vias Neurais/patologia , Nociceptores/efeitos dos fármacos , Medição da Dor/efeitos dos fármacos , Limiar da Dor/efeitos dos fármacos , Estimulação Física/efeitos adversos , Ratos , Ratos Wistar , Tempo de Reação/efeitos dos fármacos
8.
Front Behav Neurosci ; 7: 119, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24058337

RESUMO

Neudesin (also known as neuron derived neurotrophic factor, Nenf) is a scarcely studied putative non-canonical neurotrophic factor. In order to understand its function in the brain, we performed an extensive behavioral characterization (motor, emotional, and cognitive dimensions) of neudesin-null mice. The absence of neudesin leads to an anxious-like behavior as assessed in the elevated plus maze (EPM), light/dark box (LDB) and novelty suppressed feeding (NSF) tests, but not in the acoustic startle (AS) test. This anxious phenotype is associated with reduced dopaminergic input and impoverished dendritic arborizations in the dentate gyrus granule neurons of the ventral hippocampus. Interestingly, shorter dendrites are also observed in the bed nucleus of the stria terminalis (BNST) of neudesin-null mice. These findings lead us to suggest that neudesin is a novel relevant player in the maintenance of the anxiety circuitry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...