Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Model ; 29(8): 235, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37418181

RESUMO

CONTEXT: Heparin, one of the drugs reused in studies with antiviral activity, was chosen to investigate a possible blockade of the SARS-CoV-2 spike protein for viral entry through computational simulations and experimental analysis. Heparin was associated to graphene oxide to increase in the binding affinity in biological system. First, the electronic and chemical interaction between the molecules was analyzed through ab initio simulations. Later, we evaluate the biological compatibility of the nanosystems, in the target of the spike protein, through molecular docking. The results show that graphene oxide interacts with the heparin with an increase in the affinity energy with the spike protein, indicating a possible increment in the antiviral activity. Experimental analysis of synthesis and morphology of the nanostructures were carried out, indicating heparin absorption by graphene oxide, confirming the results of the first principle simulations. Experimental tests were conducted on the structure and surface of the nanomaterial, confirming the heparin aggregation on the synthesis with a size between the GO layers of 7.44 Å, indicating a C-O type bond, and exhibiting a hydrophilic surface characteristic (36.2°). METHODS: Computational simulations of the ab initio with SIESTA code, LDA approximations, and an energy shift of 0.05 eV. Molecular docking simulations were performed in the AutoDock Vina software integrated with the AMDock Tools Software using the AMBER force field. GO, GO@2.5Heparin, and GO@5Heparin were synthesized by Hummers and impregnation methods, respectively, and characterized by X-ray diffraction and surface contact angle.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Humanos , Simulação de Acoplamento Molecular , Glicoproteína da Espícula de Coronavírus/metabolismo , Heparina/metabolismo , SARS-CoV-2/metabolismo , Antivirais/farmacologia
2.
Microb Pathog ; 175: 105960, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36587926

RESUMO

Antibiotic resistance associated with pulmonary infection agents has become a public health problem, being considered one of the main priorities for immediate resolution. Thus, to increase the therapeutic options in the fight against resistant microorganisms, the synthesis of molecules from pre-existing drugs has shown to be a promising alternative. In this sense, the present work reports the synthesis, characterization, and biological evaluation (against fungal and bacterial agents that cause lung infections) of potential metallodrugs based on sulfamethoxazole complexed with AuI, AgI, HgII, CdII, NiII, and CuII. The minimal inhibitory concentration (MIC) value was used to evaluate the antifungal and antibacterial properties of the compounds. In addition, it was also evaluated the antibiofilm capacity in Pseudomonas aeruginosa, through the quantification of its biomass and visualization using atomic force microscopy. For each case, molecular docking calculations were carried out to suggest the possible biological target of the assayed inorganic complexes. Our results indicated that the novel inorganic complexes are better antibacterial and antifungal than the commercial antibiotic sulfamethoxazole, highlighting the AgI-complex, which was able to inhibit the growth of microorganisms that cause lung diseases with concentrations in the 2-8 µg mL-1 range, probably at targeting dihydropteroate synthetase - a key enzyme involved in the folate synthesis. Furthermore, sulfamethoxazole complexes were able to inhibit the formation of bacterial biofilms at significantly lower concentrations than free sulfamethoxazole, probably mainly targeting the active site of LysR-type transcriptional regulator (PqsR). Overall, the present study reports preliminary results that demonstrate the derivatization of sulfamethoxazole with transition metal cations to obtain potential metallodrugs with applications as antimicrobial and antifungal against pulmonary infections, being an alternative for drug-resistant strains.


Assuntos
Antifúngicos , Sulfametoxazol , Sulfametoxazol/farmacologia , Antifúngicos/farmacologia , Simulação de Acoplamento Molecular , Antibacterianos/química , Biofilmes , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa
3.
Anticancer Res ; 41(12): 6061-6065, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34848460

RESUMO

BACKGROUND/AIM: Antimony is a chemical element used in the therapy of parasitic diseases with a promising anticancer potential. The aim of this study was to evaluate in vitro activity of free or liposomal vesicle-packed antimony trioxide (AT or LAT) in the t(15;17)(q22;q21) translocation-positive acute promyelocytic leukemia (APL) cell line NB4. MATERIALS AND METHODS: Cytotoxicity was analysed with trypan blue exclusion, the MTT assay and neutral red exclusion assay; cell proliferation with PicoGreen®; and reactive oxygen species (ROS) production with DCFDA. RESULTS: Liposomal particles did not change the pH of the cell culture medium and entered the cells. Both formulations resulted in a time- and concentration-dependent cytotoxicity and production of ROS. LAT showed higher toxicity at lower concentrations compared to AT. CONCLUSION: LAT may be used to decrease drug dosage and maintain high anti-tumoral effects on APL cells.


Assuntos
Antimônio/administração & dosagem , Antimônio/farmacologia , Lipossomos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos , Humanos , Leucemia Promielocítica Aguda , Sistemas de Liberação de Fármacos por Nanopartículas , Espécies Reativas de Oxigênio/metabolismo
4.
Mol Neurobiol ; 58(9): 4460-4476, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34021869

RESUMO

Neurological disorders have been demonstrated to be associated with mitochondrial dysfunction. This impairment may lead to oxidative stress and neuroinflammation, specifically promoted by NLRP3 expression. Açaí (Euterpe oleracea Mart.) has been studied in this field, since it presents important biological activities. We investigated açaí extract's anti-neuroinflammatory capacity, through NLRP3 inflammasome modulation. Microglia (EOC 13.31) were exposed to LPS and nigericin, as agents of inflammatory induction, and treated with açaí extract. Additionally, we used lithium (Li) as an anti-inflammatory control. Three different experiment models were conducted: (1) isolated NLRP3 priming and activation signals; (2) combined NLRP3 priming and activation signals followed by açaí extract as a therapeutic agent; and (3) combined NLRP3 priming and activation signals with açaí extract as a preventive agent. Cells exposed to 0.1 µg/mL of LPS presented high proliferation and increased levels of NO, and ROS, while 0.1 µg/mL of açaí extract was capable to reduce cellular proliferation and recover levels of NO and ROS. Primed and activated cells presented increased levels of NLRP3, caspase-1, and IL-1ß, while açaí, Li, and orientin treatments reversed this impairment. We found that açaí, Li, and orientin were effective prophylactic treatments. Preventative treatment with Li and orientin was unable to avoid overexpression of IL-1ß compared to the positive control. However, orientin downregulated NLRP3 and caspase-1. Lastly, primed and activated cells impaired ATP production, which was prevented by pre-treatment with açaí, Li, and orientin. In conclusion, we suggest that açaí could be a potential agent to treat or prevent neuropsychiatric diseases related to neuroinflammation.


Assuntos
Anti-Inflamatórios/farmacologia , Euterpe , Microglia/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Extratos Vegetais/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Caspase 1/metabolismo , Proliferação de Células/efeitos dos fármacos , Inflamassomos/efeitos dos fármacos , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Microglia/metabolismo , Nigericina/farmacologia , Óxido Nítrico/metabolismo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...