Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
1.
Dev Cell ; 49(2): 189-205.e6, 2019 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-31014479

RESUMO

Efficient chemotaxis requires rapid coordination between different parts of the cell in response to changing directional cues. Here, we investigate the mechanism of front-rear coordination in chemotactic neutrophils. We find that changes in the protrusion rate at the cell front are instantaneously coupled to changes in retraction at the cell rear, while myosin II accumulation at the rear exhibits a reproducible 9-15-s lag. In turning cells, myosin II exhibits dynamic side-to-side relocalization at the cell rear in response to turning of the leading edge and facilitates efficient turning by rapidly re-orienting the rear. These manifestations of front-rear coupling can be explained by a simple quantitative model incorporating reversible actin-myosin interactions with a rearward-flowing actin network. Finally, the system can be tuned by the degree of myosin regulatory light chain (MRLC) phosphorylation, which appears to be set in an optimal range to balance persistence of movement and turning ability.


Assuntos
Quimiotaxia/fisiologia , Miosina Tipo II/fisiologia , Neutrófilos/fisiologia , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animais , Animais Geneticamente Modificados , Linhagem Celular , Movimento Celular/fisiologia , Polaridade Celular/fisiologia , Extensões da Superfície Celular/fisiologia , Proteínas do Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , Feminino , Humanos , Miosina Tipo II/metabolismo , Miosinas/metabolismo , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
2.
Biol Open ; 7(8)2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-30111545

RESUMO

Visualizing fluorescent proteins is essential for understanding cellular function. While advances in microscopy can now resolve individual molecules, determining whether the labeled molecules report native behaviors and how the measured behaviors can be coupled to cellular outputs remains challenging. Here, we used integrin alpha-beta heterodimers - which connect extracellular matrix (ECM) and the cytoskeleton - to quantify the mobility and conformation of labeled integrins. We found that while unlabeled and labeled integrins all localized to adhesions and support anchorage-dependent cell function, integrin mobility decreased when the beta rather than the alpha subunit was labeled. In contrast to unlabeled and alpha labeled subunits, beta labeled subunits changed cellular behavior; decreasing protrusive activity and increasing adhesion size and the extent of cell spreading. Labeling the beta subunit changed the integrin conformation, extending the molecule and exposing an epitope that is revealed by activation with Mn2+ treatment. Our findings indicate labeling induced changes in dynamic integrin behavior alter molecular conformation as well as cellular adhesion-dependent function to demonstrate a coupling between molecular inputs and distinct cellular outputs.This article has an associated First Person interview with the first author of the paper.

3.
Biol Open ; 7(5)2018 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-29685992

RESUMO

Dynein is the sole processive minus-end-directed microtubule motor found in animals. It has roles in cell division, membrane trafficking, and cell migration. Together with dynactin, dynein regulates centrosomal orientation to establish and maintain cell polarity, controls focal adhesion turnover and anchors microtubules at the leading edge. In higher eukaryotes, dynein/dynactin requires additional components such as Bicaudal D to form an active motor complex and for regulating its cellular localization. Spindly is a protein that targets dynein/dynactin to kinetochores in mitosis and can activate its motility in vitro However, no role for Spindly in interphase dynein/dynactin function has been found. We show that Spindly binds to the cell cortex and microtubule tips and colocalizes with dynein/dynactin at the leading edge of migrating U2OS cells and primary fibroblasts. U2OS cells that lack Spindly migrated slower in 2D than control cells, although centrosome polarization appeared to happen properly in the absence of Spindly. Re-expression of Spindly rescues migration, but the expression of a mutant, which is defective for dynactin binding, failed to rescue this defect. Taken together, these data demonstrate that Spindly plays an important role in mediating a subset of dynein/dynactin's function in cell migration.

5.
Neuroscience ; 373: 159-168, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29337241

RESUMO

Anomalous neuronal accumulation of Aß peptides was shown to affect synaptic transmission and contribute to neurodegeneration in Alzheimer's disease (AD) brain. Neuronal cells internalize amyloid beta (Aß) peptides from the brain extracellular space even under normal physiological conditions, and these endocytotic pathways go awry during AD progression. We hypothesized that exposure to toxic Aß species accumulating in AD brain contributes to perturbations in neuronal endocytosis. We have shown substantial down-regulation of KEGG endocytotic pathway genes in AD patient brain regions that accumulate Aß compared to those in non-demented individuals. While both Aß40 and Aß42 perturbed endocytosis and intracellular trafficking in neuronal cells, Aß40 had a greater effect than Aß42. Moreover, Aß40 decreased the neuronal uptake and lysosomal accumulation of Aß42, which tends to oligomerize at low lysosomal pH. Hence, Aß40 may reduce the prevalence of stable Aß42 oligomers that are closely associated with neurodegeneration and are intercellularly propagated across the vulnerable brain regions to eventually nucleate as amyloid plaques. In conclusion, elevated brain Aß levels and Aß42:40 ratio apparent in the early stages of AD could perturb intraneuronal trafficking, augment the anomalous accumulation of amyloid peptides in AD brain, and drive AD pathogenesis.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Endocitose/fisiologia , Neurônios/metabolismo , Fragmentos de Peptídeos/metabolismo , Transporte Proteico/fisiologia , Doença de Alzheimer/patologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Feminino , Humanos , Lisossomos/metabolismo , Lisossomos/patologia , Masculino , Neurônios/patologia , Células PC12 , Ratos
6.
PLoS One ; 12(12): e0188789, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29211763

RESUMO

Fluorescent protein (FP) biosensors based on Förster resonance energy transfer (FRET) are commonly used to study molecular processes in living cells. There are FP-FRET biosensors for many cellular molecules, but it remains difficult to perform simultaneous measurements of multiple biosensors. The overlapping emission spectra of the commonly used FPs, including CFP/YFP and GFP/RFP make dual FRET measurements challenging. In addition, a snapshot imaging modality is required for simultaneous imaging. The Image Mapping Spectrometer (IMS) is a snapshot hyperspectral imaging system that collects high resolution spectral data and can be used to overcome these challenges. We have previously demonstrated the IMS's capabilities for simultaneously imaging GFP and CFP/YFP-based biosensors in pancreatic ß-cells. Here, we demonstrate a further capability of the IMS to image simultaneously two FRET biosensors with a single excitation band, one for cAMP and the other for Caspase-3. We use these measurements to measure simultaneously cAMP signaling and Caspase-3 activation in pancreatic ß-cells during oxidative stress and hyperglycemia, which are essential components in the pathology of diabetes.


Assuntos
Técnicas Biossensoriais , Transferência Ressonante de Energia de Fluorescência/instrumentação , Ilhotas Pancreáticas/metabolismo , Caspase 3/metabolismo , AMP Cíclico/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Humanos , Hiperglicemia/metabolismo , Estresse Oxidativo
7.
Org Biomol Chem ; 15(43): 9139-9148, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-29052680

RESUMO

Photoinduced electron transfer (PeT)-type fluorescent molecular switches are often applied in ion-selective sensors. Zinc-targeting sensors that contain an anilino-based electron donor (aka, the PeT 'switch') have multiple advantages over those with an aliphatic amino switch. In addition to the lower pKa value of an aniline than that of a comparably substituted aliphatic amine, which reduces the interference of pH on the spectral properties of the attached fluorophore, the oxidation potentials of anilino groups are lower than those of aliphatic amino counterparts, which make them better electron donors in PeT. The effectiveness of anilino as a PeT switch is evaluated in a series of zinc-sensitive sensors that contain different fluorophores, zinc-binding ligands, and alkyl linkers between ligand and fluorophore. The abilities of these compounds to distinguish high and low intracellular zinc concentrations in living cells are demonstrated.


Assuntos
Espaço Intracelular/metabolismo , Imagem Molecular , Processos Fotoquímicos , Zinco/química , Zinco/metabolismo , Compostos de Anilina/química , Transporte de Elétrons , Células HeLa , Humanos , Termodinâmica
9.
Nature ; 546(7656): 162-167, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28538724

RESUMO

The organization of the eukaryotic cell into discrete membrane-bound organelles allows for the separation of incompatible biochemical processes, but the activities of these organelles must be coordinated. For example, lipid metabolism is distributed between the endoplasmic reticulum for lipid synthesis, lipid droplets for storage and transport, mitochondria and peroxisomes for ß-oxidation, and lysosomes for lipid hydrolysis and recycling. It is increasingly recognized that organelle contacts have a vital role in diverse cellular functions. However, the spatial and temporal organization of organelles within the cell remains poorly characterized, as fluorescence imaging approaches are limited in the number of different labels that can be distinguished in a single image. Here we present a systems-level analysis of the organelle interactome using a multispectral image acquisition method that overcomes the challenge of spectral overlap in the fluorescent protein palette. We used confocal and lattice light sheet instrumentation and an imaging informatics pipeline of five steps to achieve mapping of organelle numbers, volumes, speeds, positions and dynamic inter-organelle contacts in live cells from a monkey fibroblast cell line. We describe the frequency and locality of two-, three-, four- and five-way interactions among six different membrane-bound organelles (endoplasmic reticulum, Golgi, lysosome, peroxisome, mitochondria and lipid droplet) and show how these relationships change over time. We demonstrate that each organelle has a characteristic distribution and dispersion pattern in three-dimensional space and that there is a reproducible pattern of contacts among the six organelles, that is affected by microtubule and cell nutrient status. These live-cell confocal and lattice light sheet spectral imaging approaches are applicable to any cell system expressing multiple fluorescent probes, whether in normal conditions or when cells are exposed to disturbances such as drugs, pathogens or stress. This methodology thus offers a powerful descriptive tool and can be used to develop hypotheses about cellular organization and dynamics.


Assuntos
Microscopia Confocal , Imagem Molecular/métodos , Organelas/metabolismo , Biologia de Sistemas , Animais , Células COS , Sobrevivência Celular , Chlorocebus aethiops , Cor , Citoesqueleto , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Metabolismo dos Lipídeos , Lisossomos/metabolismo , Microtúbulos/metabolismo , Mitocôndrias/metabolismo , Organelas/química , Peroxissomos/metabolismo , Análise Espaço-Temporal
10.
Mol Biol Cell ; 28(11): 1467-1488, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28381423

RESUMO

Metastasis requires tumor cells to navigate through a stiff stroma and squeeze through confined microenvironments. Whether tumors exploit unique biophysical properties to metastasize remains unclear. Data show that invading mammary tumor cells, when cultured in a stiffened three-dimensional extracellular matrix that recapitulates the primary tumor stroma, adopt a basal-like phenotype. Metastatic tumor cells and basal-like tumor cells exert higher integrin-mediated traction forces at the bulk and molecular levels, consistent with a motor-clutch model in which motors and clutches are both increased. Basal-like nonmalignant mammary epithelial cells also display an altered integrin adhesion molecular organization at the nanoscale and recruit a suite of paxillin-associated proteins implicated in invasion and metastasis. Phosphorylation of paxillin by Src family kinases, which regulates adhesion turnover, is similarly enhanced in the metastatic and basal-like tumor cells, fostered by a stiff matrix, and critical for tumor cell invasion in our assays. Bioinformatics reveals an unappreciated relationship between Src kinases, paxillin, and survival of breast cancer patients. Thus adoption of the basal-like adhesion phenotype may favor the recruitment of molecules that facilitate tumor metastasis to integrin-based adhesions. Analysis of the physical properties of tumor cells and integrin adhesion composition in biopsies may be predictive of patient outcome.


Assuntos
Adesão Celular/fisiologia , Integrinas/metabolismo , Paxilina/metabolismo , Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Matriz Extracelular/metabolismo , Feminino , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Humanos , Metástase Neoplásica/fisiopatologia , Fosforilação , Transdução de Sinais
11.
Nat Cell Biol ; 19(1): 28-37, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27992406

RESUMO

Multicellularity in animals requires dynamic maintenance of cell-cell contacts. Intercellularly ligated cadherins recruit numerous proteins to form supramolecular complexes that connect with the actin cytoskeleton and support force transmission. However, the molecular organization within such structures remains unknown. Here we mapped protein organization in cadherin-based adhesions by super-resolution microscopy, revealing a multi-compartment nanoscale architecture, with the plasma-membrane-proximal cadherin-catenin compartment segregated from the actin cytoskeletal compartment, bridged by an interface zone containing vinculin. Vinculin position is determined by α-catenin, and following activation, vinculin can extend ∼30 nm to bridge the cadherin-catenin and actin compartments, while modulating the nanoscale positions of the actin regulators zyxin and VASP. Vinculin conformational activation requires tension and tyrosine phosphorylation, regulated by Abl kinase and PTP1B phosphatase. Such modular architecture provides a structural framework for mechanical and biochemical signal integration by vinculin, which may differentially engage cadherin-catenin complexes with the actomyosin machinery to regulate cell adhesions.


Assuntos
Caderinas/metabolismo , Nanopartículas/química , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animais , Biomarcadores/metabolismo , Fenômenos Biomecânicos , Adesão Celular , Membrana Celular/metabolismo , Proteínas do Citoesqueleto/metabolismo , Cães , Junções Intercelulares/metabolismo , Interferometria , Células Madin Darby de Rim Canino , Camundongos , Microscopia , Fosforilação , Transdução de Sinais , Vinculina/química , alfa Catenina/química
12.
Cell ; 167(6): 1571-1585.e18, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27839864

RESUMO

Cell migration in confined 3D tissue microenvironments is critical for both normal physiological functions and dissemination of tumor cells. We discovered a cytoskeletal structure that prevents damage to the nucleus during migration in confined microenvironments. The formin-family actin filament nucleator FMN2 associates with and generates a perinuclear actin/focal adhesion (FA) system that is distinct from previously characterized actin/FA structures. This system controls nuclear shape and positioning in cells migrating on 2D surfaces. In confined 3D microenvironments, FMN2 promotes cell survival by limiting nuclear envelope damage and DNA double-strand breaks. We found that FMN2 is upregulated in human melanomas and showed that disruption of FMN2 in mouse melanoma cells inhibits their extravasation and metastasis to the lung. Our results indicate a critical role for FMN2 in generating a perinuclear actin/FA system that protects the nucleus and DNA from damage to promote cell survival during confined migration and thus promote cancer metastasis.


Assuntos
Núcleo Celular/metabolismo , Adesões Focais , Neoplasias Pulmonares/secundário , Melanoma/patologia , Proteínas dos Microfilamentos/metabolismo , Metástase Neoplásica , Proteínas Nucleares/metabolismo , Actinas/metabolismo , Animais , Quebras de DNA de Cadeia Dupla , Embrião de Mamíferos/citologia , Matriz Extracelular/metabolismo , Feminino , Forminas , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso
13.
PLoS One ; 11(10): e0164222, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27736894

RESUMO

Cardiac troponin C (cTnC) is a key effector in cardiac muscle excitation-contraction coupling as the Ca2+ sensing subunit responsible for controlling contraction. In this study, we generated several FRET sensors for divalent cations based on cTnC flanked by a donor fluorescent protein (CFP) and an acceptor fluorescent protein (YFP). The sensors report Ca2+ and Mg2+ binding, and relay global structural information about the structural relationship between cTnC's N- and C-domains. The sensors were first characterized using end point titrations to decipher the response to Ca2+ binding in the presence or absence of Mg2+. The sensor that exhibited the largest responses in end point titrations, CTV-TnC, (Cerulean, TnC, and Venus) was characterized more extensively. Most of the divalent cation-dependent FRET signal originates from the high affinity C-terminal EF hands. CTV-TnC reconstitutes into skinned fiber preparations indicating proper assembly of troponin complex, with only ~0.2 pCa unit rightward shift of Ca2+-sensitive force development compared to WT-cTnC. Affinity of CTV-TnC for divalent cations is in agreement with known values for WT-cTnC. Analytical ultracentrifugation indicates that CTV-TnC undergoes compaction as divalent cations bind. C-terminal sites induce ion-specific (Ca2+ versus Mg2+) conformational changes in cTnC. Our data also provide support for the presence of additional, non-EF-hand sites on cTnC for Mg2+ binding. In conclusion, we successfully generated a novel FRET-Ca2+ sensor based on full length cTnC with a variety of cellular applications. Our sensor reveals global structural information about cTnC upon divalent cation binding.


Assuntos
Cálcio/metabolismo , Cátions Bivalentes/metabolismo , Proteínas Luminescentes/metabolismo , Troponina C/química , Troponina C/metabolismo , Técnicas Biossensoriais/instrumentação , Cátions Bivalentes/química , Cristalografia por Raios X , Humanos , Proteínas Luminescentes/química , Magnésio , Modelos Moleculares , Ligação Proteica , Estrutura Secundária de Proteína
14.
J Cell Sci ; 129(22): 4175-4189, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27694211

RESUMO

Nanoclustering is an emerging organizational principle for membrane-associated proteins. The functional consequences of nanoclustering for receptor signaling remain largely unknown. Here, we applied quantitative multi-channel high- and super-resolution imaging to analyze the endothelial cell surface receptor CD36, the clustering of which upon binding to multivalent ligands, such as the anti-angiogenic factor thrombospondin-1 (TSP-1), is thought to be crucial for signaling. We found that a substantial fraction of unligated CD36 exists in nanoclusters, which not only promote TSP-1 binding but are also enriched with the downstream effector Fyn. Exposure to multivalent ligands (TSP-1 or anti-CD36 IgM) that result in larger and denser CD36 clusters activates Fyn. Conversely, pharmacological perturbations that prevent the enhancement of CD36 clustering by TSP-1 abrogate Fyn activation. In both cases, there is no detectable change in Fyn enrichment at CD36 nanoclusters. These observations reveal a crucial role for the basal organization of a receptor into nanoclusters that are enriched with the signal-transducing downstream effectors of that receptor, such that enhancement of clustering by multivalent ligands is necessary and sufficient to activate the downstream effector without the need for its de novo recruitment.


Assuntos
Antígenos CD36/metabolismo , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Transdução de Sinais , Actinas/metabolismo , Linhagem Celular Transformada , Colesterol/metabolismo , Células Endoteliais/metabolismo , Ativação Enzimática , Humanos , Ligantes , Microvasos/citologia , Modelos Biológicos , Ligação Proteica , Trombospondina 1/metabolismo
15.
Nat Biotechnol ; 34(7): 760-7, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27240196

RESUMO

Orange-red fluorescent proteins (FPs) are widely used in biomedical research for multiplexed epifluorescence microscopy with GFP-based probes, but their different excitation requirements make multiplexing with new advanced microscopy methods difficult. Separately, orange-red FPs are useful for deep-tissue imaging in mammals owing to the relative tissue transmissibility of orange-red light, but their dependence on illumination limits their sensitivity as reporters in deep tissues. Here we describe CyOFP1, a bright, engineered, orange-red FP that is excitable by cyan light. We show that CyOFP1 enables single-excitation multiplexed imaging with GFP-based probes in single-photon and two-photon microscopy, including time-lapse imaging in light-sheet systems. CyOFP1 also serves as an efficient acceptor for resonance energy transfer from the highly catalytic blue-emitting luciferase NanoLuc. An optimized fusion of CyOFP1 and NanoLuc, called Antares, functions as a highly sensitive bioluminescent reporter in vivo, producing substantially brighter signals from deep tissues than firefly luciferase and other bioluminescent proteins.


Assuntos
Medições Luminescentes/métodos , Proteínas Luminescentes/síntese química , Proteínas Luminescentes/farmacocinética , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Imagem Molecular/métodos , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/farmacocinética , Iluminação/métodos , Coloração e Rotulagem
16.
Nat Methods ; 13(7): 557-62, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27240257

RESUMO

The advent of fluorescent proteins (FPs) for genetic labeling of molecules and cells has revolutionized fluorescence microscopy. Genetic manipulations have created a vast array of bright and stable FPs spanning blue to red spectral regions. Common to autofluorescent FPs is their tight ß-barrel structure, which provides the rigidity and chemical environment needed for effectual fluorescence. Despite the common structure, each FP has unique properties. Thus, there is no single 'best' FP for every circumstance, and each FP has advantages and disadvantages. To guide decisions about which FP is right for a given application, we have quantitatively characterized the brightness, photostability, pH stability and monomeric properties of more than 40 FPs to enable straightforward and direct comparison between them. We focus on popular and/or top-performing FPs in each spectral region.


Assuntos
Proteínas Luminescentes/análise , Microscopia de Fluorescência/métodos , Proteínas Recombinantes de Fusão/análise , Espectrometria de Fluorescência/métodos , Fluorescência , Células HeLa , Humanos
17.
J Cell Biol ; 213(3): 329-41, 2016 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-27138250

RESUMO

Contemporary models for neuronal migration are grounded in the view that virtually all functionally relevant microtubules (MTs) in migrating neurons are attached to the centrosome, which occupies a position between the nucleus and a short leading process. It is assumed that MTs do not undergo independent movements but rather transduce forces that enable movements of the centrosome and nucleus. The present results demonstrate that although this is mostly true, a small fraction of the MTs are centrosome-unattached, and this permits limited sliding of MTs. When this sliding is pharmacologically inhibited, the leading process becomes shorter, migration of the neuron deviates from its normal path, and the MTs within the leading process become buckled. Partial depletion of ninein, a protein that attaches MTs to the centrosome, leads to greater numbers of centrosome-unattached MTs as well as greater sliding of MTs. Concomitantly, the soma becomes less mobile and the leading process acquires an elongated morphology akin to an axon.


Assuntos
Microtúbulos/metabolismo , Neurônios/metabolismo , Animais , Movimento Celular/fisiologia , Centrossomo/metabolismo , Centrossomo/ultraestrutura , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Proteínas do Citoesqueleto/fisiologia , Microscopia Eletrônica de Transmissão , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/fisiologia , Microtúbulos/ultraestrutura , Neurônios/fisiologia , Neurônios/ultraestrutura , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/fisiologia , Fenótipo , Interferência de RNA , Ratos
18.
Nat Commun ; 7: 10833, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26926603

RESUMO

Hair cells tightly control the dimensions of their stereocilia, which are actin-rich protrusions with graded heights that mediate mechanotransduction in the inner ear. Two members of the myosin-III family, MYO3A and MYO3B, are thought to regulate stereocilia length by transporting cargos that control actin polymerization at stereocilia tips. We show that eliminating espin-1 (ESPN-1), an isoform of ESPN and a myosin-III cargo, dramatically alters the slope of the stereocilia staircase in a subset of hair cells. Furthermore, we show that espin-like (ESPNL), primarily present in developing stereocilia, is also a myosin-III cargo and is essential for normal hearing. ESPN-1 and ESPNL each bind MYO3A and MYO3B, but differentially influence how the two motors function. Consequently, functional properties of different motor-cargo combinations differentially affect molecular transport and the length of actin protrusions. This mechanism is used by hair cells to establish the required range of stereocilia lengths within a single cell.


Assuntos
Proteínas dos Microfilamentos/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo III/metabolismo , Estereocílios/fisiologia , Animais , Células COS , Chlorocebus aethiops , Orelha Interna/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas dos Microfilamentos/genética , Cadeias Pesadas de Miosina/genética , Miosina Tipo III/genética , Ratos , Técnicas de Cultura de Tecidos
19.
Mol Biol Cell ; 27(10): 1561-9, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-27009207

RESUMO

Recent advances in light microscopy permit visualization of the behavior of individual molecules within dense macromolecular ensembles in live cells. It is now conceptually possible to relate the dynamic organization of molecular machinery to cellular function. However, inherent heterogeneities, as well as disparities between spatial and temporal scales, pose substantial challenges in deriving such a relationship. New approaches are required to link discrete single-molecule behavior with continuous cellular-level processes. Here we combined intercalated molecular and cellular imaging with a computational framework to detect reproducible transient changes in the behavior of individual molecules that are linked to cellular behaviors. Applying our approach to integrin transmembrane receptors revealed a spatial density gradient underlying characteristic molecular density increases and mobility decreases, indicating the subsequent onset of local protrusive activity. Integrin mutants further revealed that these density and mobility transients are separable and depend on different binding domains within the integrin cytoplasmic tail. Our approach provides a generalizable paradigm for dissecting dynamic spatiotemporal molecular behaviors linked to local cellular events.


Assuntos
Integrinas/fisiologia , Imagem Molecular/métodos , Animais , Células CHO , Cricetulus , Difusão , Humanos , Integrinas/química , Integrinas/genética , Integrinas/metabolismo , Substâncias Macromoleculares , Microscopia de Fluorescência/métodos , Modelos Biológicos , Simulação de Dinâmica Molecular , Relação Estrutura-Atividade
20.
Dev Cell ; 36(4): 462-75, 2016 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-26906741

RESUMO

The microenvironment determines cell behavior, but the underlying molecular mechanisms are poorly understood because quantitative studies of cell signaling and behavior have been challenging due to insufficient spatial and/or temporal resolution and limitations on microenvironmental control. Here we introduce microenvironmental selective plane illumination microscopy (meSPIM) for imaging and quantification of intracellular signaling and submicrometer cellular structures as well as large-scale cell morphological and environmental features. We demonstrate the utility of this approach by showing that the mechanical properties of the microenvironment regulate the transition of melanoma cells from actin-driven protrusion to blebbing, and we present tools to quantify how cells manipulate individual collagen fibers. We leverage the nearly isotropic resolution of meSPIM to quantify the local concentration of actin and phosphatidylinositol 3-kinase signaling on the surfaces of cells deep within 3D collagen matrices and track the many small membrane protrusions that appear in these more physiologically relevant environments.


Assuntos
Técnicas de Cultura de Células , Movimento Celular/fisiologia , Transdução de Sinais/fisiologia , Actinas/metabolismo , Técnicas de Cultura de Células/métodos , Células Cultivadas , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Humanos , Microscopia/métodos , Fosfatidilinositol 3-Quinases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...