Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Discov ; 13(8): 1771-1788, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37470668

RESUMO

Lineage plasticity, a process whereby cells change their phenotype to take on a different molecular and/or histologic identity, is a key driver of cancer progression and therapy resistance. Although underlying genetic changes within the tumor can enhance lineage plasticity, it is predominantly a dynamic process controlled by transcriptional and epigenetic dysregulation. This review explores the transcriptional and epigenetic regulators of lineage plasticity and their interplay with other features of malignancy, such as dysregulated metabolism, the tumor microenvironment, and immune evasion. We also discuss strategies for the detection and treatment of highly plastic tumors. SIGNIFICANCE: Lineage plasticity is a hallmark of cancer and a critical facilitator of other oncogenic features such as metastasis, therapy resistance, dysregulated metabolism, and immune evasion. It is essential that the molecular mechanisms of lineage plasticity are elucidated to enable the development of strategies to effectively target this phenomenon. In this review, we describe key transcriptional and epigenetic regulators of cancer cell plasticity, in the process highlighting therapeutic approaches that may be harnessed for patient benefit.


Assuntos
Plasticidade Celular , Neoplasias , Humanos , Linhagem da Célula/genética , Plasticidade Celular/genética , Neoplasias/genética , Epigênese Genética , Microambiente Tumoral/genética
2.
Nat Commun ; 13(1): 2282, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35477723

RESUMO

Treatment with androgen receptor pathway inhibitors (ARPIs) in prostate cancer leads to the emergence of resistant tumors characterized by lineage plasticity and differentiation toward neuroendocrine lineage. Here, we find that ARPIs induce a rapid epigenetic alteration mediated by large-scale chromatin remodeling to support activation of stem/neuronal transcriptional programs. We identify the proneuronal transcription factor ASCL1 motif to be enriched in hyper-accessible regions. ASCL1 acts as a driver of the lineage plastic, neuronal transcriptional program to support treatment resistance and neuroendocrine phenotype. Targeting ASCL1 switches the neuroendocrine lineage back to the luminal epithelial state. This effect is modulated by disruption of the polycomb repressive complex-2 through UHRF1/AMPK axis and change the chromatin architecture in favor of luminal phenotype. Our study provides insights into the epigenetic alterations induced by ARPIs, governed by ASCL1, provides a proof of principle of targeting ASCL1 to reverse neuroendocrine phenotype, support luminal conversion and re-addiction to ARPIs.


Assuntos
Cromatina , Neoplasias da Próstata , Antagonistas de Receptores de Andrógenos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/genética , Cromatina/genética , Cromatina/metabolismo , Humanos , Masculino , Neurônios/metabolismo , Neoplasias da Próstata/patologia , Células-Tronco/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
3.
Nat Cell Biol ; 23(9): 1023-1034, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34489572

RESUMO

Cancers adapt to increasingly potent targeted therapies by reprogramming their phenotype. Here we investigated such a phenomenon in prostate cancer, in which tumours can escape epithelial lineage confinement and transition to a high-plasticity state as an adaptive response to potent androgen receptor (AR) antagonism. We found that AR activity can be maintained as tumours adopt alternative lineage identities, with changes in chromatin architecture guiding AR transcriptional rerouting. The epigenetic regulator enhancer of zeste homologue 2 (EZH2) co-occupies the reprogrammed AR cistrome to transcriptionally modulate stem cell and neuronal gene networks-granting privileges associated with both fates. This function of EZH2 was associated with T350 phosphorylation and establishment of a non-canonical polycomb subcomplex. Our study provides mechanistic insights into the plasticity of the lineage-infidelity state governed by AR reprogramming that enabled us to redirect cell fate by modulating EZH2 and AR, highlighting the clinical potential of reversing resistance phenotypes.


Assuntos
Regulação Neoplásica da Expressão Gênica/genética , Redes Reguladoras de Genes/genética , Neoplasias da Próstata/patologia , Receptores Androgênicos/metabolismo , Linhagem Celular Tumoral , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Redes Reguladoras de Genes/fisiologia , Humanos , Masculino , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/genética , Transdução de Sinais/fisiologia
4.
Endocr Relat Cancer ; 28(8): T11-T18, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34128829

RESUMO

The first case of prostate cancer was identified by histological examination by Adams, a surgeon at The London Hospital, in 1853. In his report, Adams noted that the condition was 'a very rare disease'. Now, over 150 years later, with increased life expectancy and screening, prostate cancer has become one of the most common cancers in men. In the United States alone, nearly 200,000 men are diagnosed with prostate cancer annually and about 33,000 succumb to their disease. Fifty years ago, men were typically diagnosed with prostate cancer in their seventies with disease that had metastasized to the bone and/or soft tissue. Diagnosis at such an advanced stage was a death sentence, with patients dying within 2 years. The pioneering work of Charles Huggins in the 1940s found that metastatic prostate cancer responds to androgen deprivation therapy (ADT), ushering in the rational use of hormone therapies that have irrevocably changed the course of prostate cancer disease management. Medical castration was the first effective systemic targeted therapy for any cancer and, to this day, androgen ablation remains the mainstay of prostate cancer therapy.


Assuntos
Neoplasias da Próstata , Receptores Androgênicos , Antagonistas de Androgênios , Androgênios , Humanos , Masculino , Neoplasias da Próstata/patologia
5.
Sci Rep ; 11(1): 6630, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33758253

RESUMO

Androgens are a major driver of prostate cancer (PCa) and continue to be a critical treatment target for advanced disease, which includes castration therapy and antiandrogens. However, resistance to these therapies leading to metastatic castration-resistant prostate cancer (mCRPC), and the emergence of treatment-induced neuroendocrine disease (tNEPC) remains an ongoing challenge. Instability of the DNA methylome is well established as a major hallmark of PCa development and progression. Therefore, investigating the dynamics of the methylation changes going from the castration sensitive to the tNEPC state would provide insights into novel mechanisms of resistance. Using an established xenograft model of CRPC, genome-wide methylation analysis was performed on cell lines representing various stages of PCa progression. We confirmed extensive methylation changes with the development of CRPC and tNEPC using this model. This included key genes and pathways associated with cellular differentiation and neurodevelopment. Combined analysis of methylation and gene expression changes further highlighted genes that could potentially serve as therapeutic targets. Furthermore, tNEPC-related methylation signals from this model were detectable in circulating cell free DNA (cfDNA) from mCRPC patients undergoing androgen-targeting therapies and were associated with a faster time to clinical progression. These potential biomarkers could help with identifying patients with aggressive disease.


Assuntos
Metilação de DNA , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias de Próstata Resistentes à Castração/genética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Benzamidas/farmacologia , Benzamidas/uso terapêutico , Biomarcadores Tumorais , DNA Tumoral Circulante , Ilhas de CpG , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Nitrilas/farmacologia , Nitrilas/uso terapêutico , Feniltioidantoína/farmacologia , Feniltioidantoína/uso terapêutico , Regiões Promotoras Genéticas , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/patologia
6.
Nat Commun ; 12(1): 1781, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33741908

RESUMO

Prostate cancer (PCa) risk-associated SNPs are enriched in noncoding cis-regulatory elements (rCREs), yet their modi operandi and clinical impact remain elusive. Here, we perform CRISPRi screens of 260 rCREs in PCa cell lines. We find that rCREs harboring high risk SNPs are more essential for cell proliferation and H3K27ac occupancy is a strong indicator of essentiality. We also show that cell-line-specific essential rCREs are enriched in the 8q24.21 region, with the rs11986220-containing rCRE regulating MYC and PVT1 expression, cell proliferation and tumorigenesis in a cell-line-specific manner, depending on DNA methylation-orchestrated occupancy of a CTCF binding site in between this rCRE and the MYC promoter. We demonstrate that CTCF deposition at this site as measured by DNA methylation level is highly variable in prostate specimens, and observe the MYC eQTL in the 8q24.21 locus in individuals with low CTCF binding. Together our findings highlight a causal mechanism synergistically driven by a risk SNP and DNA methylation-mediated 3D genome architecture, advocating for the integration of genetics and epigenetics in assessing risks conferred by genetic predispositions.


Assuntos
Sistemas CRISPR-Cas , Metilação de DNA , Edição de Genes/métodos , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla/métodos , Neoplasias da Próstata/genética , Animais , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo , Carcinogênese/genética , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos Endogâmicos NOD , Camundongos SCID , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas c-myc/genética , Locos de Características Quantitativas/genética , Elementos Reguladores de Transcrição/genética , Fatores de Risco
7.
PLoS One ; 15(1): e0226735, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31917811

RESUMO

The major milestones in mouse placental development are well described, but our understanding is limited to how the placenta can adapt to damage or changes in the environment. By using stereology and expression of cell cycle markers, we found that the placenta grows under normal conditions not just by hyperplasia of trophoblast cells but also through extensive polyploidy and cell hypertrophy. In response to feeding a low protein diet to mothers prior to and during pregnancy, to mimic chronic malnutrition, we found that this normal program was altered and that it was influenced by the sex of the conceptus. Male fetuses showed intrauterine growth restriction (IUGR) by embryonic day (E) 18.5, just before term, whereas female fetuses showed IUGR as early as E16.5. This difference was correlated with differences in the size of the labyrinth layer of the placenta, the site of nutrient and gas exchange. Functional changes were implied based on up-regulation of nutrient transporter genes. The junctional zone was also affected, with a reduction in both glycogen trophoblast and spongiotrophoblast cells. These changes were associated with increased expression of Phlda2 and reduced expression of Egfr. Polyploidy, which results from endoreduplication, is a normal feature of trophoblast giant cells (TGC) but also spongiotrophoblast cells. Ploidy was increased in sinusoidal-TGCs and spongiotrophoblast cells, but not parietal-TGCs, in low protein placentas. These results indicate that the placenta undergoes a range of changes in development and function in response to poor maternal diet, many of which we interpret are aimed at mitigating the impacts on fetal and maternal health.


Assuntos
Aclimatação , Dieta com Restrição de Proteínas/efeitos adversos , Embrião de Mamíferos/citologia , Retardo do Crescimento Fetal/etiologia , Privação de Alimentos , Placenta/citologia , Animais , Proliferação de Células , Embrião de Mamíferos/fisiologia , Feminino , Desenvolvimento Fetal , Retardo do Crescimento Fetal/patologia , Células Gigantes , Masculino , Fenômenos Fisiológicos da Nutrição Materna , Camundongos , Camundongos Endogâmicos C57BL , Placenta/fisiologia , Gravidez , Trofoblastos/citologia , Trofoblastos/fisiologia
8.
Endocr Relat Cancer ; 27(2): R35-R50, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31804971

RESUMO

Tumours adapt to increasingly potent targeted therapies by transitioning to alternative lineage states. In prostate cancer, the widespread clinical application of androgen receptor (AR) pathway inhibitors has led to the insurgence of tumours relapsing with a neuroendocrine phenotype, termed neuroendocrine prostate cancer (NEPC). Recent evidence suggests that this lineage reprogramming is driven largely by dysregulation of the epigenome and transcriptional networks. Indeed, aberrant DNA methylation patterning and altered expression of epigenetic modifiers, such as EZH2, transcription factors, and RNA-modifying factors, are hallmarks of NEPC tumours. In this review, we explore the nature of the epigenetic and transcriptional landscape as prostate cancer cells lose their AR-imposed identity and transition to the neuroendocrine lineage. Beyond addressing the mechanisms underlying epithelial-to-neuroendocrine lineage reprogramming, we discuss how oncogenic signaling and metabolic shifts fuel epigenetic/transcriptional changes as well as the current state of epigenetic therapies for NEPC.


Assuntos
Epigênese Genética , Redes Reguladoras de Genes , Tumores Neuroendócrinos/genética , Tumores Neuroendócrinos/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Transcriptoma , Humanos , Masculino
9.
Eur Urol Focus ; 5(2): 147-154, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30772358

RESUMO

CONTEXT: Recent studies focused on the molecular characterization of metastatic prostate cancer have identified genomic subsets and emerging resistance patterns. Detection of these alterations in patients has potential implications for therapy selection and prognostication. OBJECTIVE: The primary objective is to review the current landscape of clinical and molecular biomarkers in advanced prostate cancer and understand how they may reflect underlying tumor biology. We also discuss how these features may potentially impact earlier stages of the disease. EVIDENCE ACQUISITION: A literature search was performed of recent clinical biomarker/genomic studies focused on advanced metastatic prostate cancer as well as relevant preclinical studies investigating how these alterations influence therapy response or resistance. EVIDENCE SYNTHESIS: Metastatic castration-resistant prostate cancer is commonly driven by androgen receptor signaling even after progression on potent hormonal agents, but other alterations may also be present or emerge during therapy resistance such as DNA repair gene aberrations or combined loss of tumor suppressor genes. Biological implications of these changes are context dependent, which may affect their detection and interpretation. CONCLUSIONS: Molecular changes occur during prostate cancer progression and treatment resistance. Detection of genomic alterations has potential to influence therapy choice. Additional studies are warranted to elucidate the evolution of these changes and their impact in earlier stages of the disease. PATIENT SUMMARY: We review the biology of advanced prostate cancer, and highlight opportunities and challenges for using biological or molecular assays to help guide individualized treatment decisions for patients.


Assuntos
Biologia Molecular/métodos , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Receptores Androgênicos/genética , Antagonistas de Androgênios/uso terapêutico , Biomarcadores/metabolismo , Progressão da Doença , Genômica/métodos , Humanos , Masculino , Metástase Neoplásica/patologia , Prognóstico , Neoplasias de Próstata Resistentes à Castração/patologia , Neoplasias de Próstata Resistentes à Castração/secundário , Receptores Androgênicos/efeitos dos fármacos
10.
Nat Rev Urol ; 15(5): 271-286, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29460922

RESUMO

The success of next-generation androgen receptor (AR) pathway inhibitors, such as abiraterone acetate and enzalutamide, in treating prostate cancer has been hampered by the emergence of drug resistance. This acquired drug resistance is driven, in part, by the ability of prostate cancer cells to change their phenotype to adopt AR-independent pathways for growth and survival. Around one-quarter of resistant prostate tumours comprise cells that have undergone cellular reprogramming to become AR-independent and to acquire a continuum of neuroendocrine characteristics. These highly aggressive and lethal tumours, termed neuroendocrine prostate cancer (NEPC), exhibit reactivation of developmental programmes that are associated with epithelial-mesenchymal plasticity and acquisition of stem-like cell properties. In the past few years, our understanding of the link between lineage plasticity and an emergent NEPC phenotype has considerably increased. This new knowledge can contribute to novel therapeutic modalities that are likely to improve the treatment and clinical management of aggressive prostate cancer.


Assuntos
Antagonistas de Receptores de Andrógenos/uso terapêutico , Plasticidade Celular , Próstata/patologia , Neoplasias de Próstata Resistentes à Castração/patologia , Receptores Androgênicos/metabolismo , Progressão da Doença , Humanos , Masculino , Fenótipo , Próstata/metabolismo , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/metabolismo
11.
Mol Cell Endocrinol ; 462(Pt A): 17-24, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28315377

RESUMO

Recently, there has been renewed interest in the development and characterization of patient-derived tumour xenograft (PDX) models. Numerous PDX models have been established for prostate cancer and, importantly, retain the principal molecular, genetic, and histological characteristics of the donor tumour. As such, these models provide significant improvements over standard cell line xenograft models for biological studies, preclinical drug development, and personalized medicine strategies. This review summarizes the current state of the art in this field, illustrating the opportunities and limitations of PDX models in translational prostate cancer research.


Assuntos
Neoplasias da Próstata/patologia , Pesquisa Translacional Biomédica , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Biomarcadores Tumorais/metabolismo , Ensaios Clínicos como Assunto , Humanos , Masculino , Medicina de Precisão
12.
Clin Cancer Res ; 23(22): 6923-6933, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-28899970

RESUMO

Purpose: Prostate cancer was recently classified to three clinically relevant subtypes (PCS) demarcated by unique pathway activation and clinical aggressiveness. In this preclinical study, we investigated molecular targets and therapeutics for PCS1, the most aggressive and lethal subtype, with no treatment options available in the clinic.Experimental Design: We utilized the PCS1 gene set and our model of enzalutamide (ENZR) castration-resistant prostate cancer (CRPC) to identify targetable pathways and inhibitors for PCS1. The findings were evaluated in vitro and in the ENZR CRPC xenograft model in vivoResults: The results revealed that ENZR CRPC cells are enriched with PCS1 signature and that Forkhead box M1 (FOXM1) pathway is the central driver of this subtype. Notably, we identified Monensin as a novel FOXM1-binding agent that selectively targets FOXM1 to reverse the PCS1 signature and its associated stem-like features and reduces the growth of ENZR CRPC cells and xenograft tumors.Conclusions: Our preclinical data indicate FOXM1 pathway as a master regulator of PCS1 tumors, namely in ENZR CRPC, and targeting FOXM1 reduces cell growth and stemness in ENZR CRPC in vitro and in vivo These preclinical results may guide clinical evaluation of targeting FOXM1 to eradicate highly aggressive and lethal PCS1 prostate cancer tumors. Clin Cancer Res; 23(22); 6923-33. ©2017 AACR.


Assuntos
Biomarcadores Tumorais , Proteína Forkhead Box M1/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Benzamidas , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Proteína Forkhead Box M1/química , Proteína Forkhead Box M1/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos , Modelos Moleculares , Terapia de Alvo Molecular , Células-Tronco Neoplásicas , Nitrilas , Feniltioidantoína/análogos & derivados , Feniltioidantoína/farmacologia , Prognóstico , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Ligação Proteica , Relação Estrutura-Atividade , Transcriptoma , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Cancer Discov ; 7(1): 54-71, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27784708

RESUMO

Mechanisms controlling the emergence of lethal neuroendocrine prostate cancer (NEPC), especially those that are consequences of treatment-induced suppression of the androgen receptor (AR), remain elusive. Using a unique model of AR pathway inhibitor-resistant prostate cancer, we identified AR-dependent control of the neural transcription factor BRN2 (encoded by POU3F2) as a major driver of NEPC and aggressive tumor growth, both in vitro and in vivo Mechanistic studies showed that AR directly suppresses BRN2 transcription, which is required for NEPC, and BRN2-dependent regulation of the NEPC marker SOX2. Underscoring its inverse correlation with classic AR activity in clinical samples, BRN2 expression was highest in NEPC tumors and was significantly increased in castration-resistant prostate cancer compared with adenocarcinoma, especially in patients with low serum PSA. These data reveal a novel mechanism of AR-dependent control of NEPC and suggest that targeting BRN2 is a strategy to treat or prevent neuroendocrine differentiation in prostate tumors. SIGNIFICANCE: Understanding the contribution of the AR to the emergence of highly lethal, drug-resistant NEPC is critical for better implementation of current standard-of-care therapies and novel drug design. Our first-in-field data underscore the consequences of potent AR inhibition in prostate tumors, revealing a novel mechanism of AR-dependent control of neuroendocrine differentiation, and uncover BRN2 as a potential therapeutic target to prevent emergence of NEPC. Cancer Discov; 7(1); 54-71. ©2016 AACR.This article is highlighted in the In This Issue feature, p. 1.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Proteínas de Homeodomínio/genética , Fatores do Domínio POU/genética , Neoplasias da Próstata/genética , Receptores Androgênicos/genética , Fatores de Transcrição SOXB1/genética , Animais , Benzamidas , Diferenciação Celular , Linhagem Celular Tumoral , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Técnicas de Inativação de Genes , Proteínas de Homeodomínio/metabolismo , Humanos , Masculino , Camundongos , Transplante de Neoplasias , Nitrilas , Fatores do Domínio POU/metabolismo , Feniltioidantoína/análogos & derivados , Feniltioidantoína/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Transcrição Gênica , Regulação para Cima
14.
Stem Cells Int ; 2016: 4829602, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26880966

RESUMO

The therapeutic potential of stem cells relies on dissecting the complex signaling networks that are thought to regulate their pluripotency and self-renewal. Until recently, attention has focused almost exclusively on a small set of "core" transcription factors for maintaining the stem cell state. It is now clear that stem cell regulatory networks are far more complex. In this review, we examine the role of the androgen receptor (AR) in coordinating interactions between signaling nodes that govern the balance of cell fate decisions in prostate stem cells.

15.
Oncotarget ; 6(24): 20570-7, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26011941

RESUMO

The triple-negative breast cancer (TNBC) subtype is enriched in cancer stem cells (CSCs) and clinically correlated with the highest rate of recurrence. Several studies implicate the RSK pathway as being pivotal for the growth and proliferation of CSCs, which are postulated to drive tumor relapse. We now address the potential for the newly developed RSK inhibitor LJI308 to target the CSC population and repress TNBC growth and dissemination. Overexpression of the Y-box binding protein-1 (YB-1) oncogene in human mammary epithelial cells (HMECs) drove TNBC tumor formation characterized by a multi-drug resistance phenotype, yet these cells were sensitive to LJI308 in addition to the classic RSK inhibitors BI-D1870 and luteolin. Notably, LJI308 specifically targeted transformed cells as it had little effect on the non-tumorigenic parental HMECs. Loss of cell growth, both in 2D and 3D culture, was attributed to LJI308-induced apoptosis. We discovered CD44+/CD49f+ TNBC cells to be less sensitive to chemotherapy compared to the isogenic CD44-/CD49f- cells. However, inhibition of RSK using LJI308, BI-D1870, or luteolin was sufficient to eradicate the CSC population. We conclude that targeting RSK using specific and potent inhibitors, such as LJI308, delivers the promise of inhibiting the growth of TNBC.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Pteridinas/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Humanos , Células-Tronco Neoplásicas/patologia , Neoplasias de Mama Triplo Negativas/patologia
16.
Endocr Relat Cancer ; 22(3): R165-82, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25934687

RESUMO

Prostate cancer (PCa) has become the most common form of cancer in men in the developed world, and it ranks second in cancer-related deaths. Men that succumb to PCa have a disease that is resistant to hormonal therapies that suppress androgen receptor (AR) signaling, which plays a central role in tumor development and progression. Although AR continues to be a clinically relevant therapeutic target in PCa, selection pressures imposed by androgen-deprivation therapies promote the emergence of heterogeneous cell populations within tumors that dictate the severity of disease. This cellular plasticity, which is induced by androgen deprivation, is the focus of this review. More specifically, we address the emergence of cancer stem-like cells, epithelial-mesenchymal or myeloid plasticity, and neuroendocrine transdifferentiation as well as evidence that demonstrates how each is regulated by the AR. Importantly, because all of these cell phenotypes are associated with aggressive PCa, we examine novel therapeutic approaches for targeting therapy-induced cellular plasticity as a way of preventing PCa progression.


Assuntos
Neoplasias de Próstata Resistentes à Castração/patologia , Neoplasias da Próstata/patologia , Receptores Androgênicos/metabolismo , Animais , Plasticidade Celular/fisiologia , Transição Epitelial-Mesenquimal , Humanos , Masculino , Neoplasias da Próstata/metabolismo , Neoplasias de Próstata Resistentes à Castração/metabolismo , Receptores Androgênicos/genética , Transdução de Sinais
17.
Stem Cells ; 32(6): 1437-50, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24648416

RESUMO

There is growing evidence that cancer-initiation could result from epigenetic changes. Y-box binding protein-1 (YB-1) is a transcription/translation factor that promotes the formation of tumors in transgenic mice; however, the underlying molecular events are not understood. To explore this in a human model system, YB-1 was expressed in mammary epithelial cells under the control of a tetracycline-inducible promoter. The induction of YB-1 promoted phenotypes associated with malignancy in three-dimensional breast acini cultures. This was attributed to YB-1 enhancing the expression and activity of the histone acetyltransferase p300 leading to chromatin remodeling. Specifically, this relaxation of chromatin allowed YB-1 to bind to the BMI1 promoter. The induction of BMI1 engaged the Polycomb complex resulting in histone H2A ubiquitylation and repression of the CDKN2A locus. These events manifested functionally as enhanced self-renewal capacity that occurred in a BMI1-dependent manner. Conversely, p300 inhibition with anacardic acid prevented YB-1 from binding to the BMI1 promoter and thereby subverted self-renewal. Despite these early changes, full malignant transformation was not achieved until RSK2 became overexpressed concomitant with elevated human telomerase reverse transcriptase (hTERT) activity. The YB-1/RSK2/hTERT expressing cells formed tumors in mice that were molecularly subtyped as basal-like breast cancer. We conclude that YB-1 cooperates with p300 to allow BMI1 to over-ride p16(INK4a) -mediated cell cycle arrest enabling self-renewal and the development of aggressive breast tumors.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Mama/patologia , Transformação Celular Neoplásica/metabolismo , Montagem e Desmontagem da Cromatina , Células Epiteliais/metabolismo , Proteína 1 de Ligação a Y-Box/metabolismo , Células Acinares/metabolismo , Células Acinares/patologia , Animais , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Reprogramação Celular/genética , Montagem e Desmontagem da Cromatina/genética , Proteína p300 Associada a E1A/metabolismo , Células Epiteliais/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Transgênicos , Modelos Biológicos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo , Transcrição Gênica , Regulação para Cima/genética
18.
Oncotarget ; 2(5): 401-6, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21576761

RESUMO

Surprisingly little is known about the underlying genetic events that trigger the progression of a normal cell into a cancerous cell. We recently developed a YB-1-driven model of pre-malignancy where we uncovered that the oncogene promotes genomic instability through cell cycle checkpoint slippage and centrosome amplification. In this research perspective, we describe a possible mechanism by which YB-1 instigates preneoplastic transformation. Using Kinex antibody microarrays with coverage of 800 proteins, we discovered that pre-malignant cells exhibit deregulated signal transduction along the HER2-MAPK-RSK axis. We will discuss the implications of these finding in regard to early intervention strategies.


Assuntos
Neoplasias da Mama/genética , Modelos Biológicos , Proteína 1 de Ligação a Y-Box/metabolismo , Neoplasias da Mama/fisiopatologia , Transformação Celular Neoplásica/genética , Progressão da Doença , Redes Reguladoras de Genes , Predisposição Genética para Doença , Humanos , Sistema de Sinalização das MAP Quinases/genética , Terapia de Alvo Molecular/tendências , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/genética , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Transdução de Sinais/genética , Proteína 1 de Ligação a Y-Box/genética
19.
Cancer Res ; 70(7): 2840-51, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-20332234

RESUMO

Y-box binding protein-1 (YB-1) is an oncogenic transcription/translation factor expressed in >40% of breast cancers, where it is associated with poor prognosis, disease recurrence, and drug resistance. We questioned whether this may be linked to the ability of YB-1 to induce the expression of genes linked to cancer stem cells such as CD44 and CD49f. Herein, we report that YB-1 binds the CD44 and CD49f promoters to transcriptionally upregulate their expressions. The introduction of wild-type (WT) YB-1 or activated P-YB-1(S102) stimulated the production of CD44 and CD49f in MDA-MB-231 and SUM 149 breast cancer cell lines. YB-1-transfected cells also bound to the CD44 ligand hyaluronan more than the control cells. Similarly, YB-1 was induced in immortalized breast epithelial cells and upregulated CD44. Conversely, silencing YB-1 decreased CD44 expression as well as reporter activity in SUM 149 cells. In mice, expression of YB-1 in the mammary gland induces CD44 and CD49f with associated hyperplasia. Further, activated mutant YB-1(S102D) enhances self-renewal, primary and secondary mammosphere growth, and soft-agar colony growth, which were reversible via loss of CD44 or CD49f. We next addressed the consequence of this system on therapeutic responsiveness. Here, we show that paclitaxel induces P-YB-1(S102) expression, nuclear localization of activated YB-1, and CD44 expression. The overexpression of WT YB-1 promotes mammosphere growth in the presence of paclitaxel. Importantly, targeting YB-1 sensitized the CD44(High)/CD24(Low) cells to paclitaxel. In conclusion, YB-1 promotes cancer cell growth and drug resistance through its induction of CD44 and CD49f.


Assuntos
Neoplasias da Mama/metabolismo , Proteínas de Ligação a DNA/metabolismo , Receptores de Hialuronatos/biossíntese , Integrina alfa6/biossíntese , Proteínas Nucleares/metabolismo , Animais , Antineoplásicos Fitogênicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Processos de Crescimento Celular/genética , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Proteínas de Ligação a DNA/genética , Resistencia a Medicamentos Antineoplásicos , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Receptores de Hialuronatos/genética , Integrina alfa6/genética , Camundongos , Camundongos Transgênicos , Proteínas Nucleares/genética , Paclitaxel/farmacologia , Proteína 1 de Ligação a Y-Box
20.
Mol Cancer Ther ; 8(11): 3024-35, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19887553

RESUMO

Rhabdomyosarcoma, consisting of alveolar (aRMS) and embryonal (eRMS) subtypes, is the most common type of sarcoma in children. Currently, there are no targeted drug therapies available for rhabdomyosarcoma. In searching for new molecular therapeutic targets, we carried out genome-wide small interfering RNA (siRNA) library screens targeting human phosphatases (n = 206) and kinases (n = 691) initially against an aRMS cell line, RH30. Sixteen phosphatases and 50 kinases were identified based on growth inhibition after 72 hours. Inhibiting polo-like kinase 1 (PLK1) had the most remarkable impact on growth inhibition (approximately 80%) and apoptosis on all three rhabdomyosarcoma cell lines tested, namely, RH30, CW9019 (aRMS), and RD (eRMS), whereas there was no effect on normal muscle cells. The loss of PLK1 expression and subsequent growth inhibition correlated with decreased p-CDC25C and Cyclin B1. Increased expression of WEE 1 was also noted. The induction of apoptosis after PLK1 silencing was confirmed by increased p-H2AX, propidium iodide uptake, and chromatin condensation, as well as caspase-3 and poly(ADP-ribose) polymerase cleavage. Pediatric Ewing's sarcoma (TC-32), neuroblastoma (IMR32 and KCNR), and glioblastoma (SF188) models were also highly sensitive to PLK1 inhibition. Finally, based on cDNA microarray analyses, PLK1 mRNA was overexpressed (>1.5 fold) in 10 of 10 rhabdomyosarcoma cell lines and in 47% and 51% of primary aRMS (17 of 36 samples) and eRMS (21 of 41 samples) tumors, respectively, compared with normal muscles. Similarly, pediatric Ewing's sarcoma, neuroblastoma, and osteosarcoma tumors expressed high PLK1. We conclude that PLK1 could be a promising therapeutic target for the treatment of a wide range of pediatric solid tumors including rhabdomyosarcoma.


Assuntos
Terapia Genética/métodos , Monoéster Fosfórico Hidrolases/genética , Proteínas Quinases/genética , RNA Interferente Pequeno/genética , Rabdomiossarcoma/enzimologia , Rabdomiossarcoma/terapia , Animais , Apoptose/genética , Neoplasias Ósseas/enzimologia , Neoplasias Ósseas/genética , Neoplasias Ósseas/terapia , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Processos de Crescimento Celular/genética , Linhagem Celular Tumoral , Criança , Pré-Escolar , Inativação Gênica , Glioblastoma/enzimologia , Glioblastoma/genética , Glioblastoma/terapia , Humanos , Immunoblotting , Camundongos , Neuroblastoma/enzimologia , Neuroblastoma/genética , Neuroblastoma/terapia , Osteossarcoma/enzimologia , Osteossarcoma/genética , Osteossarcoma/terapia , Monoéster Fosfórico Hidrolases/antagonistas & inibidores , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , RNA Interferente Pequeno/administração & dosagem , Rabdomiossarcoma/genética , Rabdomiossarcoma/patologia , Sarcoma de Ewing/enzimologia , Sarcoma de Ewing/genética , Sarcoma de Ewing/terapia , Transfecção , Quinase 1 Polo-Like
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...