Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 20588, 2023 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-37996571

RESUMO

The moss layer transfer technique has been developed to restore the carbon sequestration function and typical vegetation of Sphagnum-dominated peatlands after peat extraction in North America. However, the technique does not lead to successful bryophyte establishment when applied to peatlands with a richer residual fen peat. Therefore, we evaluated an alternative method of active rewetting and passive vegetation establishment using vegetation surveys and carbon dioxide and methane (CH4) flux measurements at a post-extracted fen in southern Manitoba, Canada. After one growing season post-rewetting, wetland vegetation established and the site was a net carbon sink over the growing season. However, high abundance of Carex lasiocarpa 10 years post-treatment led to higher CH4 emissions than the reference ecosystem. Successful establishment of wetland vegetation is attributed to the area being surrounded by undisturbed fens that can provide a local source of plant propagules. Bryophyte expansion was less successful than vascular plants, likely due to episodic flooding and shading from the sedge communities. Therefore, careful management of water levels to just below the peat surface is needed if reference vegetation community recovery is the goal of restoration. Water level management will also play a key role in controlling CH4 emissions to maximize carbon sequestration potential.


Assuntos
Ecossistema , Solo , Manitoba , Estações do Ano , Áreas Alagadas , Canadá , Dióxido de Carbono , Água , Metano
2.
Nat Commun ; 13(1): 4959, 2022 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-36002465

RESUMO

High-latitude peatlands are changing rapidly in response to climate change, including permafrost thaw. Here, we reconstruct hydrological conditions since the seventeenth century using testate amoeba data from 103 high-latitude peat archives. We show that 54% of the peatlands have been drying and 32% have been wetting over this period, illustrating the complex ecohydrological dynamics of high latitude peatlands and their highly uncertain responses to a warming climate.


Assuntos
Amoeba , Pergelissolo , Mudança Climática , Hidrologia , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...