Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Insect Sci ; 4: 1415939, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711462

RESUMO

[This corrects the article DOI: 10.3389/finsc.2021.765179.].

2.
Insect Biochem Mol Biol ; 168: 104107, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38492676

RESUMO

The diamondback moth Plutella xylostella, a global insect pest of cruciferous vegetables, has evolved resistance to many classes of insecticides including diamides. Three point mutations (I4790M, I4790K, and G4946E) in the ryanodine receptor of P. xylostella (PxRyR) have been identified to associate with varying levels of resistance. In this study, we generated a knockin strain (I4790K-KI) of P. xylostella, using CRISPR/Cas9 to introduce the I4790K mutation into PxRyR of the susceptible IPP-S strain. Compared to IPP-S, the edited I4790K-KI strain exhibited high levels of resistance to both anthranilic diamides (chlorantraniliprole 1857-fold, cyantraniliprole 1433-fold) and the phthalic acid diamide flubendiamide (>2272-fold). Resistance to chlorantraniliprole in the I4790K-KI strain was inherited in an autosomal and recessive mode, and genetically linked with the I4790K knockin mutation. Computational modeling suggests the I4790K mutation reduces the binding of diamides to PxRyR by disrupting key hydrogen bonding interactions within the binding cavity. The approximate frequencies of the 4790M, 4790K, and 4946E alleles were assessed in ten geographical field populations of P. xylostella collected in China in 2021. The levels of chlorantraniliprole resistance (2.3- to 1444-fold) in these populations were significantly correlated with the frequencies (0.017-0.917) of the 4790K allele, but not with either 4790M (0-0.183) or 4946E (0.017-0.450) alleles. This demonstrates that the PxRyR I4790K mutation is currently the major contributing factor to chlorantraniliprole resistance in P. xylostella field populations within China. Our findings provide in vivo functional evidence for the causality of the I4790K mutation in PxRyR with high levels of diamide resistance in P. xylostella, and suggest that tracking the frequency of the I4790K allele is crucial for optimizing the monitoring and management of diamide resistance in this crop pest.


Assuntos
Diamida , Resistência a Inseticidas , Mariposas , Animais , Diamida/farmacologia , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Inseticidas/metabolismo , Mariposas/genética , Mariposas/metabolismo , Mutação , ortoaminobenzoatos/farmacologia , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
3.
Toxics ; 11(3)2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36977044

RESUMO

Pesticide exposure has been cited as a key threat to insect pollinators. Notably, a diverse range of potential sublethal effects have been reported in bee species, with a particular focus on effects due to exposure to neonicotinoid insecticides. Here, a purpose-built thermal-visual arena was used in a series of pilot experiments to assess the potential impact of approximate sublethal concentrations of the next generation sulfoximine insecticide sulfoxaflor (5 and 50 ppb) and the neonicotinoid insecticides thiacloprid (500 ppb) and thiamethoxam (10 ppb), on the walking trajectory, navigation and learning abilities of the buff-tailed bumblebee (Bombus terrestris audax) when subjected to an aversive conditioning task. The results suggest that only thiamethoxam prevents forager bees from improving in key training parameters (speed and distanced travelled) within the thermal visual arena. Power law analyses further revealed that a speed-curvature power law, previously reported as being present in the walking trajectories of bumblebees, is potentially disrupted under thiamethoxam (10 ppb) exposure, but not under sulfoxaflor or thiacloprid exposure. The pilot assay described provides a novel tool with which to identify subtle sublethal pesticide impacts, and their potential causes, on forager bees, that current ecotoxicological tests are not designed to assess.

4.
Pestic Biochem Physiol ; 191: 105339, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36963921

RESUMO

There are many insect pests worldwide that damage agricultural crop and reduce yield either by direct feeding or by the transmission of plant diseases. To date, control of pest insects has been achieved largely by applying synthetic insecticides. However, insecticide use can be seriously impacted by legislation that limits their use or by the evolution of resistance in the target pest. Thus, there is a move towards less use of insecticides and increased adoption of integrated pest management strategies using a wide range of non-chemical and chemical control methods. For good pest control there is a need to understand the mode of action and selectivity of insecticides, the life cycles of the pests and their biology and behaviours, all of which can benefit from good quality genome data. Here we present the complete assembled (chromosome level) genomes (incl. mtDNA) of 19 insect pests, Agriotes lineatus (click beetle/wireworm), Aphis gossypii (melon/cotton aphid), Bemisia tabaci (cotton whitefly), Brassicogethes aeneus (pollen beetle), Ceutorhynchus obstrictus (seedpod weevil), Chilo suppressalis (striped rice stem borer), Chrysodeixis includens (soybean looper), Diabrotica balteata (cucumber beetle), Diatraea saccharalis (sugar cane borer), Nezara viridula (green stink bug), Nilaparvata lugens (brown plant hopper), Phaedon cochleariae (mustard beetle), Phyllotreta striolata (striped flea beetle), Psylliodes chrysocephala (cabbage stem flea beetle), Spodoptera exigua (beet army worm), Spodoptera littoralis (cotton leaf worm), Diabrotica virgifera (western corn root worm), Euschistus heros (brown stink bug) and Phyllotreta cruciferae (crucifer flea beetle). For the first 15 of these we also present the annotation of genes encoding potential xenobiotic detoxification enzymes. This public resource will aid in the elucidation and monitoring of resistance mechanisms, the development of highly selective chemistry and potential techniques to disrupt behaviour in a way that limits the effect of the pests.


Assuntos
Afídeos , Besouros , Heterópteros , Inseticidas , Mariposas , Animais , Inseticidas/farmacologia , Agricultura/métodos , Controle de Pragas , Besouros/genética , Controle de Insetos/métodos
5.
PLoS Genet ; 18(6): e1010279, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35727851

RESUMO

The sustainable control of many highly damaging insect crop pests and disease vectors is threatened by the evolution of insecticide resistance. As a consequence, strategies have been developed that aim to prevent or delay resistance development by rotating or mixing insecticides with different modes of action (MoA). However, these approaches can be compromised by the emergence of mechanisms that confer cross-resistance to insecticides with different MoA. Despite the applied importance of cross-resistance, its evolutionary underpinnings remain poorly understood. Here we reveal how a single gene evolved the capacity to detoxify two structurally unrelated insecticides with different MoA. Using transgenic approaches we demonstrate that a specific variant of the cytochrome P450 CYP6ER1, previously shown to confer resistance to the neonicotinoid imidacloprid in the brown planthopper, N. lugens, also confers cross-resistance to the phenylpyrazole ethiprole. CYP6ER1 is duplicated in resistant strains, and we show that while the acquisition of mutations in two encoded substrate recognition sites (SRS) of one of the parologs led to resistance to imidacloprid, a different set of mutations, outside of known SRS, are primarily responsible for resistance to ethiprole. Epistatic interactions between these mutations and their genetic background suggest that the evolution of dual resistance from the same gene copy involved functional trade-offs in respect to CYP6ER1 catalytic activity for ethiprole versus imidacloprid. Surprisingly, the mutations leading to ethiprole and imidacloprid resistance do not confer the ability to detoxify the insecticide fipronil, another phenylpyrazole with close structural similarity to ethiprole. Taken together, these findings reveal how gene duplication and divergence can lead to the evolution of multiple novel functions from a single gene. From an applied perspective they also demonstrate how cross-resistance to structurally unrelated insecticides can evolve, and illustrate the difficulty in predicting cross-resistance profiles mediated by metabolic mechanisms.


Assuntos
Hemípteros , Inseticidas , Animais , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Duplicação Gênica , Resistência a Inseticidas/genética , Inseticidas/metabolismo , Inseticidas/farmacologia
6.
Ecotoxicol Environ Saf ; 217: 112247, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33901780

RESUMO

Flupyradifurone, a novel butenolide insecticide, selectively targets insect nicotinic acetylcholine receptors (nAChRs), comparable to structurally different insecticidal chemotypes such as neonicotinoids and sulfoximines. However, flupyradifurone was shown in acute toxicity tests to be several orders of magnitude less toxic to western honey bee (Apis mellifera L.) than many other insecticides targeting insect nAChRs. The underlying reasons for this difference in toxicity remains unknown and were investigated here. Pharmacokinetic studies after contact application of [14C]flupyradifurone to honey bees revealed slow uptake, with internalized compound degraded into a few metabolites that are all practically non-toxic to honey bees in both oral and contact bioassays. Furthermore, receptor binding studies revealed a lack of high-affinity binding of these metabolites to honey bee nAChRs. Screening of a library of 27 heterologously expressed honey bee cytochrome P450 enzymes (P450s) identified three P450s involved in the detoxification of flupyradifurone: CYP6AQ1, CYP9Q2 and CYP9Q3. Transgenic Drosophila lines ectopically expressing CYP9Q2 and CYP9Q3 were significantly less susceptible to flupyradifurone when compared to control flies, confirming the importance of these P450s for flupyradifurone metabolism in honey bees. Biochemical assays using the fluorescent probe substrate 7-benzyloxymethoxy-4-(trifluoromethyl)-coumarin (BOMFC) indicated a weak, non-competitive inhibition of BOMFC metabolism by flupyradifurone. In contrast, the azole fungicides prochloraz and propiconazole were strong nanomolar inhibitors of these flupyradifurone metabolizing P450s, explaining their highly synergistic effects in combination with flupyradifurone as demonstrated in acute laboratory contact toxicity tests of adult bees. Interestingly, the azole fungicide prothioconazole is only slightly synergistic in combination with flupyradifurone - an observation supported by molecular P450 inhibition assays. Such molecular assays have value in the prediction of potential risks posed to bees by flupyradifurone mixture partners under applied conditions. Quantitative PCR confirmed the expression of the identified P450 genes in all honey bee life-stages, with highest expression levels observed in late larvae and adults, suggesting honey bees have the capacity to metabolize flupyradifurone across all life-stages. These findings provide a biochemical explanation for the low intrinsic toxicity of flupyradifurone to honey bees and offer a new, more holistic approach to support bee pollinator risk assessment by molecular means.


Assuntos
4-Butirolactona/análogos & derivados , Abelhas/fisiologia , Fungicidas Industriais/toxicidade , Inseticidas/toxicidade , Piridinas/toxicidade , 4-Butirolactona/toxicidade , Animais , Sistema Enzimático do Citocromo P-450/metabolismo , Imidazóis , Inseticidas/metabolismo , Neonicotinoides , Toxicogenética , Triazóis
7.
Front Insect Sci ; 1: 765179, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-38468884

RESUMO

Mitochondria are intracellular organelles responsible for cellular respiration with one of their major roles in the production of energy in the form of ATP. Activities with increased energetic demand are especially dependent on efficient ATP production, hence sufficient mitochondrial function is fundamental. In bees, flight muscle and the brain have particularly high densities of mitochondria to facilitate the substantial ATP production required for flight activity and neuronal signalling. Neonicotinoids are systemic synthetic insecticides that are widely utilised against crop herbivores but have been reported to cause, by unknown mechanisms, mitochondrial dysfunction, decreasing cognitive function and flight activity among pollinating bees. Here we explore, using high-resolution respirometry, how the neonicotinoid imidacloprid may affect oxidative phosphorylation in the brain and flight muscle of the buff-tailed bumblebee, Bombus terrestris. We find that acute exposure increases routine oxygen consumption in the flight muscle of worker bees. This provides a candidate explanation for prior reports of early declines in flight activity following acute exposure. We further find that imidacloprid increases the maximum electron transport capacity in the brain, with a trend towards increased overall oxygen consumption. However, intra-individual variability is high, limiting the extent to which apparent effects of imidacloprid on brain mitochondria are shown conclusively. Overall, our results highlight the necessity to examine tissue-specific effects of imidacloprid on respiration and energy production.

8.
Crop Prot ; 138: 105316, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33273750

RESUMO

The cabbage stem flea beetle, Psylliodes chrysocephala L. is a major pest of winter oilseed rape in several European countries. Traditionally, neonicotinoid and pyrethroid insecticides have been widely used for control of P. chrysocephala, but in recent years, following the withdrawal of neonicotinoid insecticide seed treatments, control failures have occurred due to an over reliance on pyrethroids. In line with previous surveys, UK populations of P. chrysocephala were found to exhibit high levels of resistance to the pyrethroid lambda-cyhalothrin. This resistance was suppressed by pre-treatment with the cytochrome P450 inhibitor PBO under laboratory conditions, suggesting that the resistance has a strong metabolic component. The L1014F (kdr) mutation in the voltage-gated sodium channel, which confers relatively low levels (10-20 fold) of resistance to pyrethroids, was also found to be widespread across the UK regions sampled, whereas the L925I (s-kdr) mutation was much less common. The current survey also suggests that higher levels of pyrethroid resistance have spread to the North and West of England, and that resistance levels continue to remain high in the South East.

9.
Pestic Biochem Physiol ; 169: 104674, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32828379

RESUMO

There is an on-going need to develop new insecticides that are not compromised by resistance and that have improved environmental profiles. However, the cost of developing novel compounds has increased significantly over the last two decades. This is in part due to increased regulatory requirements, including the need to screen both pest and pollinator insect species to ensure that pre-existing resistance will not hamper the efficacy of a new insecticide via cross-resistance, or adversely affect non-target insect species. To add to this problem the collection and maintenance of toxicologically relevant pest and pollinator species and strains is costly and often difficult. Here we present Fly-Tox, a panel of publicly available transgenic Drosophila melanogaster lines each containing one or more pest or pollinator P450 genes that have been previously shown to metabolise insecticides. We describe the range of ways these tools can be used, including in predictive screens to avoid pre-existing cross-resistance, to identify potential resistance-breaking inhibitors, in the initial assessment of potential insecticide toxicity to bee pollinators, and identifying harmful pesticide-pesticide interactions.


Assuntos
Resistência a Inseticidas/efeitos dos fármacos , Inseticidas/farmacologia , Animais , Animais Geneticamente Modificados , Abelhas , Sistema Enzimático do Citocromo P-450 , Drosophila melanogaster/efeitos dos fármacos
10.
Pestic Biochem Physiol ; 166: 104562, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32448417

RESUMO

The buff-tailed bumblebee, Bombus terrestris audax is an important pollinator within both landscape ecosystems and agricultural crops. During their lifetime bumblebees are regularly challenged by various environmental stressors including insecticides. Historically the honey bee (Apis mellifera spp.) has been used as an 'indicator' species for 'standard' ecotoxicological testing, but it has been suggested that it is not always a good proxy for other eusocial or solitary bees. To investigate this, the susceptibility of B. terrestris to selected pesticides within the neonicotinoid, pyrethroid and organophosphate classes was examined using acute insecticide bioassays. Acute oral and topical LD50 values for B. terrestris against these insecticides were broadly consistent with published results for A. mellifera. For the neonicotinoids, imidacloprid was highly toxic, but thiacloprid and acetamiprid were practically non-toxic. For pyrethroids, deltamethrin was highly toxic, but tau-fluvalinate only slightly toxic. For the organophosphates, chlorpyrifos was highly toxic, but coumaphos practically non-toxic. Bioassays using insecticides with common synergists enhanced the sensitivity of B. terrestris to several insecticides, suggesting detoxification enzymes may provide a level of protection against these compounds. The sensitivity of B. terrestris to compounds within three different insecticide classes is similar to that reported for honey bees, with marked variation in sensitivity to different insecticides within the same insecticide class observed in both species. This finding highlights the need to consider each compound within an insecticide class in isolation rather than extrapolating between different insecticides in the same class or sharing the same mode of action.


Assuntos
Inseticidas , Animais , Abelhas , Combinação de Medicamentos , Ecossistema , Glicerol , Salicilatos
11.
Insect Biochem Mol Biol ; 122: 103388, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32376273

RESUMO

Voltage-gated sodium channels (VGSCs) are a major target site for the action of pyrethroid insecticides and resistance to pyrethroids has been ascribed to mutations in the VGSC gene. VGSCs in insects are encoded by only one gene and their structural and functional diversity results from posttranscriptional modification, particularly, alternative splicing. Using whole cell patch clamping of neurons from pyrethroid susceptible (wild-type) and resistant strains (s-kdr) of housefly, Musca domestica, we have shown that the V50 for activation and steady state inactivation of sodium currents (INa+) is significantly depolarised in s-kdr neurons compared with wild-type and that 10 nM deltamethrin significantly hyperpolarised both of these parameters in the neurons from susceptible but not s-kdr houseflies. Similarly, tail currents were more sensitive to deltamethrin in wild-type neurons (EC15 14.5 nM) than s-kdr (EC15 133 nM). We also found that in both strains, INa+ are of two types: a strongly inactivating (to 6.8% of peak) current, and a more persistent (to 17.1% of peak) current. Analysis of tail currents showed that the persistent current in both strains (wild-type EC15 5.84 nM) was more sensitive to deltamethrin than was the inactivating type (wild-type EC15 35.1 nM). It has been shown previously, that the presence of exon l in the Drosophila melanogaster VGSC gives rise to a more persistent INa+ than does the alternative splice variant containing exon k and we used PCR with housefly head cDNA to confirm the presence of the housefly orthologues of splice variants k and l. Their effect on deltamethrin sensitivity was determined by examining INa+ in Xenopus oocytes expressing either the k or l variants of the Drosophila para VGSC. Analysis of tail currents, in the presence of various concentrations of deltamethrin, showed that the l splice variant was significantly more sensitive (EC50 42 nM) than the k splice variant (EC50 866 nM). We conclude that in addition to the presence of point mutations, target site resistance to pyrethroids may involve the differential expression of splice variants.


Assuntos
Processamento Alternativo , Drosophila melanogaster/fisiologia , Moscas Domésticas/fisiologia , Resistência a Inseticidas/genética , Mutação , Nitrilas/farmacologia , Piretrinas/farmacologia , Canais de Sódio Disparados por Voltagem/genética , Animais , Drosophila melanogaster/genética , Técnicas de Silenciamento de Genes , Moscas Domésticas/genética , Inseticidas/farmacologia , Canais de Sódio Disparados por Voltagem/metabolismo
12.
PLoS One ; 15(1): e0226393, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31940358

RESUMO

We report the discovery that Bombus terrestris audax (Buff-tailed bumblebee) locomotor trajectories adhere to a speed-curvature power law relationship which has previously been found in humans, non-human primates and Drosophila larval trajectories. No previous study has reported such a finding in adult insect locomotion. We used behavioural tracking to study walking Bombus terrestris in an arena under different training environments. Trajectories analysed from this tracking show the speed-curvature power law holds robustly at the population level, displaying an exponent close to two-thirds. This exponent corroborates previous findings in human movement patterns, but differs from the three-quarter exponent reported for Drosophila larval locomotion. There are conflicting hypotheses for the principal origin of these speed-curvature laws, ranging from the role of central planning to kinematic and muscular skeletal constraints. Our findings substantiate the latter idea that dynamic power-law effects are robust, differing only through kinematic constraints due to locomotive method. Our research supports the notion that these laws are present in a greater range of species than previously thought, even in the bumblebee. Such power laws may provide optimal behavioural templates for organisms, delivering a potential analytical tool to study deviations from this template. Our results suggest that curvature and angular speed are constrained geometrically, and independently of the muscles and nerves of the performing body.


Assuntos
Abelhas/fisiologia , Comportamento Animal , Locomoção , Animais , Modelos Biológicos
13.
BMC Genomics ; 20(1): 996, 2019 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-31856729

RESUMO

BACKGROUND: The glasshouse whitefly, Trialeurodes vaporariorum, is a damaging crop pest and an invasive generalist capable of feeding on a broad range of host plants. As such this species has evolved mechanisms to circumvent the wide spectrum of anti-herbivore allelochemicals produced by its host range. T. vaporariorum has also demonstrated a remarkable ability to evolve resistance to many of the synthetic insecticides used for control. RESULTS: To gain insight into the molecular mechanisms that underpin the polyphagy of T. vaporariorum and its resistance to natural and synthetic xenobiotics, we sequenced and assembled a reference genome for this species. Curation of genes putatively involved in the detoxification of natural and synthetic xenobiotics revealed a marked reduction in specific gene families between this species and another generalist whitefly, Bemisia tabaci. Transcriptome profiling of T. vaporariorum upon transfer to a range of different host plants revealed profound differences in the transcriptional response to more or less challenging hosts. Large scale changes in gene expression (> 20% of genes) were observed during adaptation to challenging hosts with a range of genes involved in gene regulation, signalling, and detoxification differentially expressed. Remarkably, these changes in gene expression were associated with significant shifts in the tolerance of host-adapted T. vaporariorum lines to natural and synthetic insecticides. CONCLUSIONS: Our findings provide further insights into the ability of polyphagous insects to extensively reprogram gene expression during host adaptation and illustrate the potential implications of this on their sensitivity to synthetic insecticides.


Assuntos
Regulação da Expressão Gênica de Plantas , Hemípteros/genética , Resistência a Inseticidas/genética , Adaptação Fisiológica/genética , Animais , Cisteína Proteases/genética , Cisteína Proteases/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Genes de Insetos , Genoma de Inseto , Hemípteros/enzimologia , Hemípteros/metabolismo , Interações Hospedeiro-Patógeno/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Inseticidas , Plantas , RNA-Seq , Transdução de Sinais/genética , Transcriptoma , Xenobióticos/metabolismo
14.
Insect Biochem Mol Biol ; 111: 103171, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31136794

RESUMO

Recent work has shown that two bumblebee (Bombus terrestris) cytochrome P450s of the CYP9Q subfamily, CYP9Q4 and CYP9Q5, are important biochemical determinants of sensitivity to neonicotinoid insecticides. Here, we report the characterisation of a third P450 gene CYP9Q6, previously mis-annotated in the genome of B. terrestris, encoding an enzyme that metabolises the N-cyanoamidine neonicotinoids thiacloprid and acetamiprid with high efficiency. The genomic location and complete ORF of CYP9Q6 was corroborated by PCR and its metabolic activity characterised in vitro by expression in an insect cell line. CYP9Q6 metabolises both thiacloprid and acetamiprid more rapidly than the previously reported CYP9Q4 and CYP9Q5. We further demonstrate a direct, in vivo correlation between the expression of the CYP9Q6 enzyme in transgenic Drosophila melanogaster and an increased tolerance to thiacloprid and acetamiprid. We conclude that CYP9Q6 is an efficient metaboliser of N-cyanoamidine neonicotinoids and likely plays a key role in the high tolerance of B. terrestris to these insecticides.


Assuntos
Abelhas/enzimologia , Sistema Enzimático do Citocromo P-450/metabolismo , Neonicotinoides/metabolismo , Tiazinas/metabolismo , Animais , Animais Geneticamente Modificados , Abelhas/genética , Abelhas/metabolismo , Linhagem Celular , Sistema Enzimático do Citocromo P-450/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Resistência a Inseticidas/genética , Mariposas
15.
Sci Rep ; 9(1): 5291, 2019 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-30923355

RESUMO

Voltage-gated sodium channels (VGSC) are transmembrane proteins that generate an action potential in excitable cells and play an essential role in neuronal signaling. Since VGSCs play a crucial role in nerve transmission they have become primary targets for a broad range of commercial insecticides. RNA interference (RNAi) is a valuable reverse genetics tool used in functional genomics, but recently, it has also shown promise as a novel agent that could be used to control agricultural insect pests. In this study, we targeted the VGSC (MpNav) gene in the peach-potato aphid Myzus persicae, by oral feeding of artificial diets mixed with dsRNAs. Knock-down of MpNav gene expression caused up to 65% mortality in 3rd instar nymphs. Moreover, significantly lower fecundity and longevity was observed in adult aphids that had been fed with dsMpNav solution at the nymphal stage. Analysis of gene expression by qRT-PCR indicated that the aphid mortality rates and the lowered fecundity and longevity were attributable to the down-regulation of MpNav by RNAi. Taken together, our results show that MpNav is a viable candidate target gene for the development of an RNAi-based bio-aphicide.


Assuntos
Afídeos/genética , Agentes de Controle Biológico , Interferência de RNA , RNA de Cadeia Dupla/genética , Canais de Sódio Disparados por Voltagem/genética , Animais , Produção Agrícola , Fertilidade/genética , Técnicas de Silenciamento de Genes , Genes de Insetos , Longevidade/genética , Prunus persica/parasitologia , Genética Reversa , Solanum tuberosum/parasitologia , Fatores de Tempo
16.
PLoS Genet ; 15(2): e1007903, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30716069

RESUMO

The impact of pesticides on the health of bee pollinators is determined in part by the capacity of bee detoxification systems to convert these compounds to less toxic forms. For example, recent work has shown that cytochrome P450s of the CYP9Q subfamily are critically important in defining the sensitivity of honey bees and bumblebees to pesticides, including neonicotinoid insecticides. However, it is currently unclear if solitary bees have functional equivalents of these enzymes with potentially serious implications in relation to their capacity to metabolise certain insecticides. To address this question, we sequenced the genome of the red mason bee, Osmia bicornis, the most abundant and economically important solitary bee species in Central Europe. We show that O. bicornis lacks the CYP9Q subfamily of P450s but, despite this, exhibits low acute toxicity to the N-cyanoamidine neonicotinoid thiacloprid. Functional studies revealed that variation in the sensitivity of O. bicornis to N-cyanoamidine and N-nitroguanidine neonicotinoids does not reside in differences in their affinity for the nicotinic acetylcholine receptor or speed of cuticular penetration. Rather, a P450 within the CYP9BU subfamily, with recent shared ancestry to the Apidae CYP9Q subfamily, metabolises thiacloprid in vitro and confers tolerance in vivo. Our data reveal conserved detoxification pathways in model solitary and eusocial bees despite key differences in the evolution of specific pesticide-metabolising enzymes in the two species groups. The discovery that P450 enzymes of solitary bees can act as metabolic defence systems against certain pesticides can be leveraged to avoid negative pesticide impacts on these important pollinators.


Assuntos
Abelhas/efeitos dos fármacos , Abelhas/genética , Neonicotinoides/farmacologia , Animais , Evolução Biológica , Sistema Enzimático do Citocromo P-450/genética , Europa (Continente) , Genômica/métodos , Inseticidas/farmacologia , Polinização/efeitos dos fármacos , Polinização/genética , Tiazinas/farmacologia
17.
Gene ; 670: 70-86, 2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-29792951

RESUMO

Using publicly available genomic data, combined with RT-PCR validation, we explore structural genomic variation for two major ion channels across insect classes. We have manually curated ryanodine receptor (RyR) and inositol 1,4,5-trisphosphate receptor (IP3R) ORFs and their corresponding genomic structures from 26 different insects covering major insect orders. We found that, despite high protein identity for both RyRs (>75%) and IP3Rs (~67%), the overall complexity of the gene structure varies greatly between different insect orders with the simplest genes (fewest introns) found in Diptera and the most complex in Lepidoptera. Analysis of intron conservation patterns indicated that the majority of conserved introns are found close to the 5' end of the channels and in RyR around the highly conserved mutually exclusive splice site. Of the two channels the IP3Rs appear to have a less well conserved organisation with a greater overall number of unique introns seen between insect orders. We experimentally validated two of the manually curated ORFs for IP3Rs and confirmed an atypical (3799aa) IP3R receptor in Myzus persicae, which is approximately 1000 amino acids larger than previously reported for IP3Rs.


Assuntos
Variação Genética , Receptores de Inositol 1,4,5-Trifosfato/genética , Insetos/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Animais , Sinalização do Cálcio , Bases de Dados Genéticas , Evolução Molecular , Proteínas de Insetos/genética , Fases de Leitura Aberta
18.
Curr Biol ; 28(7): 1137-1143.e5, 2018 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-29576476

RESUMO

The impact of neonicotinoid insecticides on the health of bee pollinators is a topic of intensive research and considerable current debate [1]. As insecticides, certain neonicotinoids, i.e., N-nitroguanidine compounds such as imidacloprid and thiamethoxam, are as intrinsically toxic to bees as to the insect pests they target. However, this is not the case for all neonicotinoids, with honeybees orders of magnitude less sensitive to N-cyanoamidine compounds such as thiacloprid [2]. Although previous work has suggested that this is due to rapid metabolism of these compounds [2-5], the specific gene(s) or enzyme(s) involved remain unknown. Here, we show that the sensitivity of the two most economically important bee species to neonicotinoids is determined by cytochrome P450s of the CYP9Q subfamily. Radioligand binding and inhibitor assays showed that variation in honeybee sensitivity to N-nitroguanidine and N-cyanoamidine neonicotinoids does not reside in differences in their affinity for the receptor but rather in divergent metabolism by P450s. Functional expression of the entire CYP3 clade of P450s from honeybees identified a single P450, CYP9Q3, that metabolizes thiacloprid with high efficiency but has little activity against imidacloprid. We demonstrate that bumble bees also exhibit profound differences in their sensitivity to different neonicotinoids, and we identify CYP9Q4 as a functional ortholog of honeybee CYP9Q3 and a key metabolic determinant of neonicotinoid sensitivity in this species. Our results demonstrate that bee pollinators are equipped with biochemical defense systems that define their sensitivity to insecticides and this knowledge can be leveraged to safeguard bee health.


Assuntos
Abelhas/fisiologia , Sistema Enzimático do Citocromo P-450/efeitos dos fármacos , Inseticidas/toxicidade , Neonicotinoides/toxicidade , Animais , Abelhas/efeitos dos fármacos , Abelhas/metabolismo
19.
Curr Biol ; 28(2): 268-274.e5, 2018 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-29337073

RESUMO

Gene duplication is a major source of genetic variation that has been shown to underpin the evolution of a wide range of adaptive traits [1, 2]. For example, duplication or amplification of genes encoding detoxification enzymes has been shown to play an important role in the evolution of insecticide resistance [3-5]. In this context, gene duplication performs an adaptive function as a result of its effects on gene dosage and not as a source of functional novelty [3, 6-8]. Here, we show that duplication and neofunctionalization of a cytochrome P450, CYP6ER1, led to the evolution of insecticide resistance in the brown planthopper. Considerable genetic variation was observed in the coding sequence of CYP6ER1 in populations of brown planthopper collected from across Asia, but just two sequence variants are highly overexpressed in resistant strains and metabolize imidacloprid. Both variants are characterized by profound amino-acid alterations in substrate recognition sites, and the introduction of these mutations into a susceptible P450 sequence is sufficient to confer resistance. CYP6ER1 is duplicated in resistant strains with individuals carrying paralogs with and without the gain-of-function mutations. Despite numerical parity in the genome, the susceptible and mutant copies exhibit marked asymmetry in their expression with the resistant paralogs overexpressed. In the primary resistance-conferring CYP6ER1 variant, this results from an extended region of novel sequence upstream of the gene that provides enhanced expression. Our findings illustrate the versatility of gene duplication in providing opportunities for functional and regulatory innovation during the evolution of an adaptive trait.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Evolução Molecular , Duplicação Gênica , Hemípteros/genética , Resistência a Inseticidas , Inseticidas/farmacologia , Neonicotinoides/farmacologia , Nitrocompostos/farmacologia , Animais , Dosagem de Genes , Hemípteros/efeitos dos fármacos
20.
Neurotoxicology ; 60: 224-233, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27246647

RESUMO

Diamide insecticides, such as flubendiamide and chlorantraniliprole, are a new class of insecticide with a novel mode of action, selectively activating the insect ryanodine receptor (RyR). They are particularly active against lepidopteran pests of cruciferous vegetable crops, including the diamondback moth, Plutella xylostella. However, within a relatively short period following their commercialisation, a comparatively large number of control failures have been reported in the field. In this review we summarise the current body of knowledge regarding the molecular mechanisms of diamide resistance in P. xylostella. Resistant phenotypes collected from different countries can often be linked to specific target-site mutation(s) in the ryanodine receptors' transmembrane domain. Metabolic mechanisms of resistance have also been proposed. Rapid resistance development is probably a consequence of over-reliance on this one class of chemistry for diamondback moth control.


Assuntos
Diamida/farmacologia , Proteínas de Insetos/genética , Resistência a Inseticidas , Inseticidas/farmacologia , Mariposas/efeitos dos fármacos , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Aminoácidos/genética , Animais , Proteínas de Insetos/metabolismo , Mariposas/genética , Polimorfismo Genético , RNA Mensageiro/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...