Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Front Cardiovasc Med ; 9: 873144, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35694668

RESUMO

Objective: The standard treatment for complicated Stanford type B aortic dissection (TBAD) is thoracic endovascular aortic repair (TEVAR). Functional parameters, specifically blood flow, are not measured in the clinical assessment of TEVAR, yet they are of outmost importance in patient outcome. Consequently, we investigated the impact of TEVAR on the flows in the aorta and its branches in TBAD using 4D Phase-Contrast Magnetic Resonance Imaging (4D Flow MRI). Methods: Seven patients with TBAD scheduled for TEVAR underwent pre and post-operative 4D Flow MRI. An experienced reader assessed the presence of helical flow in the false lumen (FL) using streamlines and measured net flow at specific locations. In addition, forward and reverse flows, stasis, helicity, and absolute helicity were computed automatically along the aorta centerline. Average values were then computed in the segmented vessels. Impact of TEVAR on these parameters was assessed with a Wilcoxon signed rank test. Impact of the metallic stent on the velocity quantification was assessed using intra-class correlation coefficient (ICC) between velocities measured intra-stent and in adjacent stent-free regions. Results: FL helical flow was observed proximally in 6 cases and distally in 2 cases pre-operatively. Helical flow disappeared post-TEVAR proximally, but developed distally for 2 patients. Intra-stent measures were similar to stent-free with a median difference of 0.1 L/min and an ICC equal to 0.967 (p < 0.01). Forward flow increased from 59.9 to 81.6% in the TL and significantly decreased in the FL from 15.9 to 3.3%. Similarly, reverse flow increased in the TL from 4.36 to 10.8% and decreased in the FL from 10.3 to 4.6%. No significant changes were observed in net flow for aortic branches (p > 0.05). A significant increase in FL stasis was observed (p = 0.04). Discussion: TEVAR significantly increased forward flow in the TL and significantly decreased both forward and reverse flows in the FL. Interestingly, reverse flow in the TL increased post-TEVAR, which could be due to increased rigidity of the wall, due to the metallic stent. User independent helicity quantification enabled detection of elevated helicity at the level of secondary entry tears which had been missed by streamline visualization.

2.
Med Phys ; 49(1): 420-431, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34778978

RESUMO

PURPOSE: Motion-mask segmentation from thoracic computed tomography (CT) images is the process of extracting the region that encompasses lungs and viscera, where large displacements occur during breathing. It has been shown to help image registration between different respiratory phases. This registration step is, for example, useful for radiotherapy planning or calculating local lung ventilation. Knowing the location of motion discontinuity, that is, sliding motion near the pleura, allows a better control of the registration preventing unrealistic estimates. Nevertheless, existing methods for motion-mask segmentation are not robust enough to be used in clinical routine. This article shows that it is feasible to overcome this lack of robustness by using a lightweight deep-learning approach usable on a standard computer, and this even without data augmentation or advanced model design. METHODS: A convolutional neural-network architecture with three 2D U-nets for the three main orientations (sagittal, coronal, axial) was proposed. Predictions generated by the three U-nets were combined by majority voting to provide a single 3D segmentation of the motion mask. The networks were trained on a database of nonsmall cell lung cancer 4D CT images of 43 patients. Training and evaluation were done with a K-fold cross-validation strategy. Evaluation was based on a visual grading by two experts according to the appropriateness of the segmented motion mask for the registration task, and on a comparison with motion masks obtained by a baseline method using level sets. A second database (76 CT images of patients with early-stage COVID-19), unseen during training, was used to assess the generalizability of the trained neural network. RESULTS: The proposed approach outperformed the baseline method in terms of quality and robustness: the success rate increased from 53 % to 79 % without producing any failure. It also achieved a speed-up factor of 60 with GPU, or 17 with CPU. The memory footprint was low: less than 5 GB GPU RAM for training and less than 1 GB GPU RAM for inference. When evaluated on a dataset with images differing by several characteristics (CT device, pathology, and field of view), the proposed method improved the success rate from 53 % to 83 % . CONCLUSION: With 5-s processing time on a mid-range GPU and success rates around 80 % , the proposed approach seems fast and robust enough to be routinely used in clinical practice. The success rate can be further improved by incorporating more diversity in training data via data augmentation and additional annotated images from different scanners and diseases. The code and trained model are publicly available.


Assuntos
COVID-19 , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Tomografia Computadorizada Quadridimensional , Humanos , Processamento de Imagem Assistida por Computador , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/radioterapia , SARS-CoV-2
3.
Intensive Care Med Exp ; 9(1): 46, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34505190

RESUMO

BACKGROUND: Personalizing mechanical ventilation requires the development of reliable bedside monitoring techniques. The multiple-breaths nitrogen washin-washout (MBNW) technique is currently available to measure end-expiratory lung volume (EELVMBNW), but the precision of the technique may be poor, with percentage errors ranging from 28 to 57%. The primary aim of the study was to evaluate the reliability of a novel MBNW bedside system using fast mainstream sensors to assess EELV in an experimental acute respiratory distress syndrome (ARDS) model, using computed tomography (CT) as the gold standard. The secondary aims of the study were: (1) to evaluate trending ability of the novel system to assess EELV; (2) to evaluate the reliability of estimated alveolar recruitment induced by positive end-expiratory pressure (PEEP) changes computed from EELVMBNW, using CT as the gold standard. RESULTS: Seven pigs were studied in 6 experimental conditions: at baseline, after experimental ARDS and during a decremental PEEP trial at PEEP 16, 12, 6 and 2 cmH2O. EELV was computed at each PEEP step by both the MBNW technique (EELVMBNW) and CT (EELVCT). Repeatability was assessed by performing replicate measurements. Alveolar recruitment between two consecutive PEEP levels after lung injury was measured with CT (VrecCT), and computed from EELV measurements (VrecMBNW) as ΔEELV minus the product of ΔPEEP by static compliance. EELVMBNW and EELVCT were significantly correlated (R2 = 0.97). An acceptable non-constant bias between methods was identified, slightly decreasing toward more negative values as EELV increased. The conversion equation between EELVMBNW and EELVCT was: EELVMBNW = 0.92 × EELVCT + 36. The 95% prediction interval of the bias amounted to ± 86 mL and the percentage error between both methods amounted to 13.7%. The median least significant change between repeated measurements amounted to 8% [CI95%: 4-10%]. EELVMBNW adequately tracked EELVCT changes over time (concordance rate amounting to 100% [CI95%: 87%-100%] and angular bias amounting to - 2° ± 10°). VrecMBNW and VrecCT were significantly correlated (R2 = 0.92). A non-constant bias between methods was identified, slightly increasing toward more positive values as Vrec increased. CONCLUSIONS: We report a new bedside MBNW technique that reliably assesses EELV in an experimental ARDS model with high precision and excellent trending ability.

4.
J Crit Care ; 60: 169-176, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32854088

RESUMO

PURPOSE: The aim of this study was to assess whether the computed tomography (CT) features of COVID-19 (COVID+) ARDS differ from those of non-COVID-19 (COVID-) ARDS patients. MATERIALS AND METHODS: The study is a single-center prospective observational study performed on adults with ARDS onset ≤72 h and a PaO2/FiO2 ≤ 200 mmHg. CT scans were acquired at PEEP set using a PEEP-FiO2 table with VT adjusted to 6 ml/kg predicted body weight. RESULTS: 22 patients were included, of whom 13 presented with COVID-19 ARDS. Lung weight was significantly higher in COVID- patients, but all COVID+ patients presented supranormal lung weight values. Noninflated lung tissue was significantly higher in COVID- patients (36 ± 14% vs. 26 ± 15% of total lung weight at end-expiration, p < 0.01). Tidal recruitment was significantly higher in COVID- patients (20 ± 12 vs. 9 ± 11% of VT, p < 0.05). Lung density histograms of 5 COVID+ patients with high elastance (type H) were similar to those of COVID- patients, while those of the 8 COVID+ patients with normal elastance (type L) displayed higher aerated lung fraction.


Assuntos
COVID-19/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Síndrome do Desconforto Respiratório/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Adulto , Idoso , Estudos de Casos e Controles , Feminino , Humanos , Pulmão , Complacência Pulmonar , Masculino , Pessoa de Meia-Idade , Respiração com Pressão Positiva , Estudos Prospectivos
5.
Int J Comput Assist Radiol Surg ; 14(11): 1945-1953, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31502194

RESUMO

PURPOSE: (1) To improve the accuracy of global and regional alveolar-recruitment quantification in CT scan pairs by accounting for lung-tissue displacements and deformation, (2) To propose a method for local-recruitment calculation. METHODS: Recruitment was calculated by subtracting the quantity of non-aerated lung tissues between expiration and inspiration. To assess global recruitment, lung boundaries were first interactively delineated at inspiration, and then they were warped based on automatic image registration to define the boundaries at expiration. To calculate regional recruitment, the lung mask defined at inspiration was cut into pieces, and these were also warped to encompass the same tissues at expiration. Local-recruitment map was calculated as follows: For each voxel at expiration, the matching location at inspiration was determined by image registration, non-aerated voxels were counted in the neighborhood of the respective locations, and the voxel count difference was normalized by the neighborhood size. The methods were evaluated on 120 image pairs of 12 pigs with experimental acute respiratory distress syndrome. RESULTS: The dispersion of global- and regional-recruitment values decreased when using image registration, compared to the conventional approach neglecting tissue motion. Local-recruitment maps overlaid onto the original images were visually consistent, and the sum of these values over the whole lungs was very close to the global-recruitment estimate, except four outliers. CONCLUSIONS: Image registration can compensate lung-tissue displacements and deformation, thus improving the quantification of alveolar recruitment. Local-recruitment calculation can also benefit from image registration, and its values can be overlaid onto the original image to display a local-recruitment map. They also can be integrated over arbitrarily shaped regions to assess regional or global recruitment.


Assuntos
Pulmão/diagnóstico por imagem , Síndrome do Desconforto Respiratório/diagnóstico , Tomografia Computadorizada por Raios X/métodos , Animais , Modelos Animais de Doenças , Suínos
6.
JACC Cardiovasc Imaging ; 12(1): 123-132, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29778857

RESUMO

OBJECTIVES: The aim of this study was to develop a new scoring system based on thoracic aortic calcification (TAC) to predict 1-year cardiovascular and all-cause mortality. BACKGROUND: A calcified aorta is often associated with poor prognosis after transcatheter aortic valve replacement (TAVR). A risk score encompassing aortic calcification may be valuable in identifying poor TAVR responders. METHODS: The C4CAPRI (4 Cities for Assessing CAlcification PRognostic Impact) multicenter study included a training cohort (1,425 patients treated using TAVR between 2010 and 2014) and a contemporary test cohort (311 patients treated in 2015). TAC was measured by computed tomography pre-TAVR. CAPRI risk scores were based on the linear predictors of Cox models including TAC in addition to comorbidities and demographic, atherosclerotic disease and cardiac function factors. CAPRI scores were constructed and tested in 2 independent cohorts. RESULTS: Cardiovascular and all-cause mortality at 1 year was 13.0% and 17.9%, respectively, in the training cohort and 8.2% and 11.8% in the test cohort. The inclusion of TAC in the model improved prediction: 1-cm3 increase in TAC was associated with a 6% increase in cardiovascular mortality and a 4% increase in all-cause mortality. The predicted and observed survival probabilities were highly correlated (slopes >0.9 for both cardiovascular and all-cause mortality). The model's predictive power was fair (AUC 68% [95% confidence interval [CI]: 64% to 72%]) for both cardiovascular and all-cause mortality. The model performed similarly in the training and test cohorts. CONCLUSIONS: The CAPRI score, which combines the TAC variable with classical prognostic factors, is predictive of 1-year cardiovascular and all-cause mortality. Its predictive performance was confirmed in an independent contemporary cohort. CAPRI scores are highly relevant to current practice and strengthen the evidence base for decision making in valvular interventions. Its routine use may help prevent futile procedures.


Assuntos
Aorta Torácica/diagnóstico por imagem , Doenças da Aorta/diagnóstico por imagem , Estenose da Valva Aórtica/cirurgia , Valva Aórtica/cirurgia , Aortografia/métodos , Angiografia por Tomografia Computadorizada , Tomografia Computadorizada Multidetectores , Substituição da Valva Aórtica Transcateter/mortalidade , Calcificação Vascular/diagnóstico por imagem , Idoso , Idoso de 80 Anos ou mais , Doenças da Aorta/mortalidade , Valva Aórtica/diagnóstico por imagem , Valva Aórtica/fisiopatologia , Estenose da Valva Aórtica/diagnóstico por imagem , Estenose da Valva Aórtica/mortalidade , Estenose da Valva Aórtica/fisiopatologia , Causas de Morte , Feminino , França , Humanos , Masculino , Valor Preditivo dos Testes , Medição de Risco , Fatores de Risco , Fatores de Tempo , Substituição da Valva Aórtica Transcateter/efeitos adversos , Resultado do Tratamento , Calcificação Vascular/mortalidade
7.
J Med Eng ; 2013: 471682, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-27006915

RESUMO

An MR acquisition protocol and a processing method using distributed computing on the European Grid Infrastructure (EGI) to allow 3D liver perfusion parametric mapping after Magnetic Resonance Dynamic Contrast Enhanced (MR-DCE) imaging are presented. Seven patients (one healthy control and six with chronic liver diseases) were prospectively enrolled after liver biopsy. MR-dynamic acquisition was continuously performed in free-breathing during two minutes after simultaneous intravascular contrast agent (MS-325 blood pool agent) injection. Hepatic capillary system was modeled by a 3-parameters one-compartment pharmacokinetic model. The processing step was parallelized and executed on the EGI. It was modeled and implemented as a grid workflow using the Gwendia language and the MOTEUR workflow engine. Results showed good reproducibility in repeated processing on the grid. The results obtained from the grid were well correlated with ROI-based reference method ran locally on a personal computer. The speed-up range was 71 to 242 with an average value of 126. In conclusion, distributed computing applied to perfusion mapping brings significant speed-up to quantification step to be used for further clinical studies in a research context. Accuracy would be improved with higher image SNR accessible on the latest 3T MR systems available today.

8.
Rev. colomb. radiol ; 23(3): 3521-3528, sept. 2012.
Artigo em Espanhol | LILACS | ID: lil-656539

RESUMO

En este artículo se presenta un software de código abierto, llamado CreaTools, cuyo principal objetivo es el procesar y facilitar la visualización de imágenes médicas. Este software flexible funciona en diferentes sistemas operativos (Linux, Mac OS X, Windows), se desarrolla en el lenguaje de programación C++ para asegurar una fácil integración de módulos C++ y proporciona a los usuarios herramientas computacionales para construir interfaces gráficas de usuario (GUI), incluidos los datos de entrada/salida (manejo de archivos), la visualización, la interacción y el procesamiento de datos. Este artículo muestra también la utilidad de CreaTools mediante un proyecto de investigación que consiste en la detección automática de lesiones arteriales. Los algoritmos desarrollados han sido implementados en una interfaz gráfica amigable con visualización 3D e interacción. Ejemplos de tales algoritmos incluyen la extracción de ejes de arterias y la generación de modelos descriptivos de arterias con lesiones y sin lesiones.


Assuntos
Anormalidades Cardiovasculares , Vasos Coronários , Processamento de Imagem Assistida por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...