Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 16(749): eabp8334, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38809966

RESUMO

Fibrodysplasia ossificans progressiva (FOP) is a rare genetic disease driven by gain-of-function variants in activin receptor-like kinase 2 (ALK2), the most common variant being ALK2R206H. In FOP, ALK2 variants display increased and dysregulated signaling through the bone morphogenetic protein (BMP) pathway resulting in progressive and permanent replacement of skeletal muscle and connective tissues with heterotopic bone, ultimately leading to severe debilitation and premature death. Here, we describe the discovery of BLU-782 (IPN60130), a small-molecule ALK2R206H inhibitor developed for the treatment of FOP. A small-molecule library was screened in a biochemical ALK2 binding assay to identify potent ALK2 binding compounds. Iterative rounds of structure-guided drug design were used to optimize compounds for ALK2R206H binding, ALK2 selectivity, and other desirable pharmacokinetic properties. BLU-782 preferentially bound to ALK2R206H with high affinity, inhibiting signaling from ALK2R206H and other rare FOP variants in cells in vitro without affecting signaling of closely related homologs ALK1, ALK3, and ALK6. In vivo efficacy of BLU-782 was demonstrated using a conditional knock-in ALK2R206H mouse model, where prophylactic oral dosing reduced edema and prevented cartilage and heterotopic ossification (HO) in both muscle and bone injury models. BLU-782 treatment preserved the normal muscle-healing response in ALK2R206H mice. Delayed dosing revealed a short 2-day window after injury when BLU-782 treatment prevented HO in ALK2R206H mice, but dosing delays of 4 days or longer abrogated HO prevention. Together, these data suggest that BLU-782 may be a candidate for prevention of HO in FOP.


Assuntos
Modelos Animais de Doenças , Miosite Ossificante , Ossificação Heterotópica , Animais , Miosite Ossificante/tratamento farmacológico , Miosite Ossificante/metabolismo , Ossificação Heterotópica/tratamento farmacológico , Ossificação Heterotópica/metabolismo , Ossificação Heterotópica/prevenção & controle , Camundongos , Humanos , Receptores de Activinas Tipo II/metabolismo , Receptores de Ativinas Tipo I/metabolismo , Receptores de Ativinas Tipo I/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos
2.
PLoS One ; 8(9): e72714, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24023766

RESUMO

OBJECTIVE: Osteoarthritis (OA) is the most common form of arthritis worldwide. Pain and reduced function are the main symptoms in this prevalent disease. There are currently no treatments for OA that modify disease progression; therefore analgesic drugs and joint replacement for larger joints are the standard of care. In light of several recent studies reporting the use of bisphosphonates for OA treatment, our work aimed to evaluate published literature to assess the effectiveness of bisphosphonates in OA treatment. METHODS: Literature databases were searched from inception to the 30th June 2012 for clinical trials of bisphosphonates to treat OA pain. Data was appraised and levels of evidence determined qualitatively using best evidence synthesis from the Cochrane Collaboration. The two largest studies were conducted with risedronate in the treatment of knee OA, for which meta-analyses were performed for pain and functional outcomes. RESULTS: Our searches found 13/297 eligible studies, which included a total of 3832 participants. The trials recruited participants with OA of the hand (n=1), knee (n=8), knee and spine (n=3), or hip (n=1). Our meta-analysis of the two largest knee studies using risedronate 15 mg showed odds ratios favouring placebo interventions for the Western Ontario and McMaster Universities Arthritis Index (WOMAC) pain (1.73), WOMAC function (2.03), and WOMAC stiffness (1.82). However, 8 trials (61.5%) reported that bisphosphonates improve pain assessed by VAS scores and 2 (38.5%) reported significant improvement in WOMAC pain scores compared to control groups. CONCLUSIONS: There is limited evidence that bisphosphonates are effective in the treatment of OA pain. Limitations of the studies we analysed included the differences in duration of bisphosphonate use, the dose and route of administration and the lack of long-term data on OA joint structure modification post-bisphosphonate therapy. Future more targeted studies are required to appreciate the value of bisphosphonates in treating osteoarthritis pain. TRIAL REGISTRATION: PROSPERO Register CRD42012002541.


Assuntos
Conservadores da Densidade Óssea/uso terapêutico , Difosfonatos/uso terapêutico , Osteoartrite/tratamento farmacológico , Dor/tratamento farmacológico , Humanos , Resultado do Tratamento
3.
J Bacteriol ; 195(10): 2244-54, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23475976

RESUMO

The plasmid-encoded type three secretion system (TTSS) of Yersinia spp. is responsible for the delivery of effector proteins into cells of the innate immune system, where these effectors disrupt the target cells' activity. Successful translocation of effectors into mammalian cells requires Yersinia to both insert a translocon into the host cell membrane and sense contact with host cells. To probe the events necessary for translocation, we investigated protein-protein interactions among TTSS components of the needle-translocon complex using a chemical cross-linking-based approach. We detected extracellular protein complexes containing YscF, LcrV, and YopD that were dependent upon needle formation. The formation of these complexes was evaluated in a secretion-competent but translocation-defective mutant, the YscFD28AD46A strain (expressing YscF with the mutations D28A and D46A). We found that one of the YscF and most of the LcrV and YopD cross-linked complexes were nearly absent in this mutant. Furthermore, the YscFD28AD46A strain did not support YopB insertion into mammalian membranes, supporting the idea that the LcrV tip complex is required for YopB insertion and translocon formation. However, the YscFD28AD46A strain did secrete Yops in the presence of host cells, indicating that a translocation-competent tip complex is not required to sense contact with host cells to trigger Yop secretion. In conclusion, in the absence of cross-linkable LcrV-YscF interactions, translocon insertion is abolished, but Yersinia still retains the ability to sense cell contact.


Assuntos
Antígenos de Bactérias/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Yersinia pseudotuberculosis/metabolismo , Antígenos de Bactérias/genética , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/genética , Transporte Biológico/genética , Transporte Biológico/fisiologia , Linhagem Celular , Interações Hospedeiro-Patógeno , Humanos , Imunoprecipitação , Proteínas Citotóxicas Formadoras de Poros/genética , Ligação Proteica/genética , Ligação Proteica/fisiologia , Yersinia pseudotuberculosis/genética , Yersinia pseudotuberculosis/fisiologia
4.
Am J Physiol Cell Physiol ; 304(8): C739-47, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23364266

RESUMO

This study investigated the molecular identity and impact of enhancing voltage-gated Na(+) (Na(V)) channels in the control of vascular tone. In rat isolated mesenteric and femoral arteries mounted for isometric tension recording, the vascular actions of the Na(V) channel activator veratridine were examined. Na(V) channel expression was probed by molecular techniques and immunocytochemistry. In mesenteric arteries, veratridine induced potent contractions (pEC(50) = 5.19 ± 0.20, E(max) = 12.0 ± 2.7 mN), which were inhibited by 1 µM TTX (a blocker of all Na(V) channel isoforms, except Na(V)1.5, Na(V)1.8, and Na(V)1.9), but not by selective blockers of Na(V)1.7 (ProTx-II, 10 nM) or Na(V)1.8 (A-80347, 1 µM) channels. The responses were insensitive to endothelium removal but were partly (~60%) reduced by chemical destruction of sympathetic nerves by 6-hydroxydopamine (2 mM) or antagonism at the α1-adrenoceptor by prazosin (1 µM). KB-R7943, a blocker of the reverse mode of the Na(+)/Ca(2+) exchanger (3 µM), inhibited veratridine contractions in the absence or presence of prazosin. T16A(inh)-A01, a Ca(2+)-activated Cl(-) channel blocker (10 µM), also inhibited the prazosin-resistant contraction to veratridine. Na(V) channel immunoreactivity was detected in freshly isolated mesenteric myocytes, with apparent colocalization with the Na(+)/Ca(2+) exchanger. Veratridine induced similar contractile effects in the femoral artery, and mRNA transcripts for Na(V)1.2 and Na(V)1.3 channels were evident in both vessel types. We conclude that, in addition to sympathetic nerves, NaV channels are expressed in vascular myocytes, where they are functionally coupled to the reverse mode of Na(+)/Ca(2+) exchanger and subsequent activation of Ca(2+)-activated Cl(-) channels, causing contraction. The TTX-sensitive Na(V)1.2 and Na(V)1.3 channels are likely involved in vascular control.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.2/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.3/metabolismo , Vasoconstrição/fisiologia , Animais , Masculino , Artérias Mesentéricas/fisiologia , Músculo Liso Vascular/metabolismo , Ratos , Ratos Wistar , Bloqueadores dos Canais de Sódio/farmacologia , Veratridina/farmacologia
5.
Br J Pharmacol ; 168(3): 773-84, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22946562

RESUMO

BACKGROUND AND PURPOSE: T16A(inh) -A01 is a recently identified inhibitor of the calcium-activated chloride channel TMEM16A. The aim of this study was to test the efficacy of T16A(inh) -A01 for inhibition of calcium-activated chloride channels in vascular smooth muscle and consequent effects on vascular tone. EXPERIMENTAL APPROACH: Single channel and whole cell patch clamp was performed on single smooth muscle cells from rabbit pulmonary artery and mouse thoracic aorta. Isometric tension studies were performed on mouse thoracic aorta and mesenteric artery as well as human abdominal visceral adipose artery. KEY RESULTS: In rabbit pulmonary artery myocytes T16A(inh) -A01 (1-30 µM) inhibited single calcium (Ca(2+) )-activated chloride (Cl(-) ) channels and whole cell currents activated by 500 nM free Ca(2+) . Similar effects were observed for single Ca(2+) -activated Cl(-) channels in mouse thoracic aorta, and in both cell types, channel activity was abolished by two antisera raised against TMEM16A but not by a bestrophin antibody. The TMEM16A potentiator, F(act) (10 µM), increased single channel and whole cell Ca(2+) -activated Cl(-) currents in rabbit pulmonary arteries. In isometric tension studies, T16A(inh) -A01 relaxed mouse thoracic aorta pre-contracted with methoxamine with an IC(50) of 1.6 µM and suppressed the methoxamine concentration-effect curve. T16A(inh) -A01 did not affect the maximal contraction produced by 60 mM KCl and the relaxant effect of 10 µM T16A(inh) -A01 was not altered by incubation of mouse thoracic aorta in a cocktail of potassium (K(+) ) channel blockers. T16A(inh) -A01 (10 µM) also relaxed human visceral adipose arteries by 88 ± 3%. CONCLUSIONS AND IMPLICATIONS: T16A(inh) -A01 blocks calcium-activated chloride channels in vascular smooth muscle cells and relaxes murine and human blood vessels.


Assuntos
Canais de Cloreto/antagonistas & inibidores , Miócitos de Músculo Liso/efeitos dos fármacos , Proteínas de Neoplasias/antagonistas & inibidores , Pirimidinas/farmacologia , Tiazóis/farmacologia , Vasodilatadores/farmacologia , Tecido Adiposo/irrigação sanguínea , Tecido Adiposo/fisiologia , Animais , Anoctamina-1 , Aorta Torácica/citologia , Aorta Torácica/fisiologia , Canais de Cloreto/fisiologia , Humanos , Artérias Mesentéricas/efeitos dos fármacos , Artérias Mesentéricas/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Miócitos de Músculo Liso/fisiologia , Proteínas de Neoplasias/fisiologia , Artéria Pulmonar/citologia , Artéria Pulmonar/fisiologia , Coelhos
6.
Am J Physiol Cell Physiol ; 303(12): C1229-43, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23034390

RESUMO

Pulmonary artery smooth muscle cells (PASMCs) are more depolarized and display higher Ca(2+) levels in pulmonary hypertension (PH). Whether the functional properties and expression of Ca(2+)-activated Cl- channels (Cl(Ca)), an important excitatory mechanism in PASMCs, are altered in PH is unknown. The potential role of Cl(Ca) channels in PH was investigated using the monocrotaline (MCT)-induced PH model in the rat. Three weeks postinjection with a single dose of MCT (50 mg/kg ip), the animals developed right ventricular hypertrophy (heart weight measurements) and changes in pulmonary arterial flow (pulse-waved Doppler imaging) that were consistent with increased pulmonary arterial pressure and PH. Whole cell patch experiments revealed an increase in niflumic acid (NFA)-sensitive Ca(2+)-activated Cl(-) current [I(Cl(Ca))] density in PASMCs from large conduit and small intralobar pulmonary arteries of MCT-treated rats vs. aged-matched saline-injected controls. Quantitative RT-PCR and Western blot analysis revealed that the alterations in I(Cl(Ca)) were accompanied by parallel changes in the expression of TMEM16A, a gene recently shown to encode for Cl(Ca) channels. The contraction to serotonin of conduit and intralobar pulmonary arteries from MCT-treated rats exhibited greater sensitivity to nifedipine (1 µM), an l-type Ca(2+) channel blocker, and NFA (30 or 100 µM, with or without 10 µM indomethacin to inhibit cyclooxygenases) or T16A(Inh)-A01 (10 µM), TMEM16A/Cl(Ca) channel inhibitors, than that of control animals. In conclusion, augmented Cl(Ca)/TMEM16A channel activity is a major contributor to the changes in electromechanical coupling of PA in this model of PH. TMEM16A-encoded channels may therefore represent a novel therapeutic target in this disease.


Assuntos
Canais de Cloreto/biossíntese , Hipertensão Pulmonar/fisiopatologia , Hipertrofia Ventricular Direita/fisiopatologia , Animais , Anoctamina-1 , Bloqueadores dos Canais de Cálcio/farmacologia , Agonistas dos Canais de Cloreto , Canais de Cloreto/antagonistas & inibidores , Canais de Cloreto/fisiologia , Inibidores de Ciclo-Oxigenase/farmacologia , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/tratamento farmacológico , Hipertrofia Ventricular Direita/induzido quimicamente , Hipertrofia Ventricular Direita/tratamento farmacológico , Indometacina/farmacologia , Masculino , Monocrotalina/toxicidade , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/fisiopatologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/fisiologia , Nifedipino/farmacologia , Ácido Niflúmico/farmacologia , Técnicas de Patch-Clamp , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/fisiopatologia , Pirimidinas/farmacologia , Ratos , Ratos Wistar , Serotonina/farmacologia , Tiazóis/farmacologia
7.
Hypertension ; 59(4): 877-84, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22353613

RESUMO

KCNQ4-encoded voltage-dependent potassium (Kv7.4) channels are important regulators of vascular tone that are severely compromised in models of hypertension. However, there is no information as to the role of these channels in responses to endogenous vasodilators. We used a molecular knockdown strategy, as well as pharmacological tools, to examine the hypothesis that Kv7.4 channels contribute to ß-adrenoceptor-mediated vasodilation in the renal vasculature and underlie the vascular deficit in spontaneously hypertensive rats. Quantitative PCR and immunohistochemistry confirmed gene and protein expression of KCNQ1, KCNQ3, KCNQ4, KCNQ5, and Kv7.1, Kv7.4, and Kv7.5 in rat renal artery. Isoproterenol produced concentration-dependent relaxation of precontracted renal arteries and increased Kv7 channel currents in isolated smooth muscle cells. Application of the Kv7 blocker linopirdine attenuated isoproterenol-induced relaxation and current. Isoproterenol-induced relaxations were also reduced in arteries incubated with small interference RNAs targeted to KCNQ4 that produced a ≈60% decrease in Kv7.4 protein level. Relaxation to isoproterenol and the Kv7 activator S-1 were abolished in arteries from spontaneously hypertensive rats, which was associated with ≈60% decrease in Kv7.4 abundance. This study provides the first evidence that Kv7 channels contribute to ß-adrenoceptor-mediated vasodilation in the renal vasculature and that abrogation of Kv7.4 channels is strongly implicated in the impaired ß-adrenoceptor pathway in spontaneously hypertensive rats. These findings may provide a novel pathogenic link between arterial dysfunction and hypertension.


Assuntos
Hipertensão/fisiopatologia , Canais de Potássio KCNQ/deficiência , Receptores Adrenérgicos beta/fisiologia , Artéria Renal/fisiologia , Vasodilatação/fisiologia , Agonistas Adrenérgicos beta/farmacologia , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Técnicas de Silenciamento de Genes , Isoproterenol/farmacologia , Canais de Potássio KCNQ/efeitos dos fármacos , Canais de Potássio KCNQ/genética , Masculino , RNA Interferente Pequeno/farmacologia , Ratos , Ratos Endogâmicos SHR , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Vasodilatação/efeitos dos fármacos
8.
Br J Pharmacol ; 166(4): 1377-87, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22251082

RESUMO

BACKGROUND AND PURPOSE: The aim of this study was to characterize the functional impact of KCNQ1-encoded voltage-dependent potassium channels (K(v)7.1) in the vasculature. EXPERIMENTAL APPROACH: Mesenteric arteries, intrapulmonary arteries and thoracic aortae were isolated from adult rats. K(v)7.1 channel expression was established by fluorescence immunocytochemistry. Wire myography determined functionality of these channels in response to selective blockers and activators. Xenopus oocytes expressing K(v)7.1 channels were used to assess the effectiveness of selective K(v)7.1 channel blockers. KEY RESULTS: K(v)7.1 channels were identified in arterial myocytes by immunocytochemistry. K(v)7.1 blockers HMR1556, L-768,673 (10 µM) and JNJ39490282 (JNJ282; 1 µM) had no contractile effects in arteries, whereas the pan-K(v)7 channel blocker linopirdine (10 µM) evoked robust contractions. Application of two compounds purported to activate K(v)7.1 channels, L-364 373 (R-L3) and mefenamic acid, relaxed mesenteric arteries preconstricted by methoxamine. These responses were reversed by HMR1556 or L-768,673 but not JNJ282. Similar effects were observed in the thoracic aorta and intrapulmonary arteries. CONCLUSIONS AND IMPLICATIONS: In contrast to previous assumptions, K(v)7.1 channels expressed in arterial myocytes are functional ion channels. Although these channels do not appear to contribute to resting vascular tone, K(v)7.1 activators were effective vasorelaxants.


Assuntos
Aorta Torácica/metabolismo , Canal de Potássio KCNQ1/metabolismo , Artérias Mesentéricas/metabolismo , Bloqueadores dos Canais de Potássio/farmacologia , Artéria Pulmonar/metabolismo , Vasoconstritores/farmacologia , Vasodilatadores/farmacologia , Animais , Aorta Torácica/citologia , Aorta Torácica/efeitos dos fármacos , Feminino , Humanos , Técnicas In Vitro , Canais de Potássio KCNQ/agonistas , Canais de Potássio KCNQ/antagonistas & inibidores , Canais de Potássio KCNQ/genética , Canais de Potássio KCNQ/metabolismo , Canal de Potássio KCNQ1/agonistas , Canal de Potássio KCNQ1/antagonistas & inibidores , Canal de Potássio KCNQ1/genética , Masculino , Potenciais da Membrana/efeitos dos fármacos , Artérias Mesentéricas/citologia , Artérias Mesentéricas/efeitos dos fármacos , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Artéria Pulmonar/citologia , Artéria Pulmonar/efeitos dos fármacos , Ratos , Ratos Wistar , Proteínas Recombinantes/agonistas , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/metabolismo , Xenopus laevis
9.
Circulation ; 124(5): 602-11, 2011 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-21747056

RESUMO

BACKGROUND: Voltage-gated potassium (K(+)) channels encoded by KCNQ genes (Kv7 channels) have been identified in various rodent and human blood vessels as key regulators of vascular tone; however, nothing is known about the functional impact of these channels in vascular disease. We ascertained the effect of 3 structurally different activators of Kv7.2 through Kv7.5 channels (BMS-204352, S-1, and retigabine) on blood vessels from normotensive and hypertensive animals. METHODS AND RESULTS: Precontracted thoracic aorta and mesenteric artery segments from normotensive rats were relaxed by all 3 Kv7 activators, with potencies of BMS-204352=S-1>retigabine. We also tested these agents in the coronary circulation using the Langendorff heart preparation. BMS-204352 and S-1 dose dependently increased coronary perfusion at concentrations between 0.1 and 10 µmol/L, whereas retigabine was effective at 1 to 10 µmol/L. In addition, S-1 increased K(+) currents in isolated mesenteric artery myocytes. The ability of these agents to relax precontracted vessels, increase coronary flow, or augment K(+) currents was impaired considerably in tissues isolated from spontaneously hypertensive rats (SHRs). Of the 5 KCNQ genes, only the expression of KCNQ4 was reduced (≈3.7 fold) in SHRs aorta. Kv7.4 protein levels were ≈50% lower in aortas and mesenteric arteries from spontaneously hypertensive rats compared with normotensive vessels. A similar attenuated response to S-1 and decreased Kv7.4 were observed in mesenteric arteries from mice made hypertensive by angiotensin II infusion compared with normotensive controls. CONCLUSIONS: In 2 different rat and mouse models of hypertension, the functional impact of Kv7 channels was dramatically downregulated.


Assuntos
Hipertensão/fisiopatologia , Canais de Potássio KCNQ/fisiologia , Angiotensina II/farmacologia , Animais , Aorta Torácica/fisiologia , Pressão Sanguínea/fisiologia , Carbamatos/farmacologia , Regulação para Baixo/fisiologia , Hipertensão/induzido quimicamente , Técnicas In Vitro , Indóis/farmacologia , Canais de Potássio KCNQ/agonistas , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Artérias Mesentéricas/fisiologia , Camundongos , Fenilenodiaminas/farmacologia , Ratos , Ratos Endogâmicos SHR , Ratos Wistar , Vasoconstritores/farmacologia
10.
Breast ; 20(3): 259-63, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21324695

RESUMO

PURPOSE: Current AJCC/UICC staging of early breast cancer defines tumor stage using the largest focus, adding the suffix "(m)" to indicate multiplicity. This method may underestimate the total tumor burden in multifocal and multicentric breast cancer (MMBC). This study examines other measures of tumor size in MMBC to determine which provides the best fit in a multivariate model for survival outcomes. PATIENTS AND METHODS: This prospective cohort study used data from the Australian Capital Territory and New South Wales Breast Cancer Treatment Group database to identify 812 women with ipsilateral invasive breast cancer; 141 of these women had MMBC. The pathology slides of all women with MMBC were reviewed and all foci of invasive breast cancer were re-measured. The measures of interest were the diameter of the largest deposit, the aggregate diameter and the aggregate volume. These measures of tumor size were included with other clinicopathological features of MMBC in a multivariate analysis to assess their relationship with progression-free survival (PFS) and overall survival (OS). RESULTS: Tumor size was associated with PFS and OS in MMBC using any of the three measures; however, the diameter of the largest deposit provided the best fit in the multivariate model for OS. CONCLUSION: Tumor size is an important prognostic factor for MMBC, and the diameter of the largest deposit provides a better fit in a multivariate model for OS than aggregate diameter and aggregate volume. Therefore, tumor size in MMBC should continue to be measured using the diameter of the largest deposit.


Assuntos
Neoplasias da Mama/patologia , Neoplasias da Mama/mortalidade , Progressão da Doença , Feminino , Humanos , Pessoa de Meia-Idade , Análise Multivariada , Estadiamento de Neoplasias , Prognóstico , Estudos Prospectivos , Análise de Sobrevida , Carga Tumoral
11.
Br J Pharmacol ; 162(1): 42-53, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20840535

RESUMO

BACKGROUND AND PURPOSE: KCNQ-encoded voltage-gated potassium channels (K(v) 7) have recently been identified as important anti-constrictor elements in rodent blood vessels but the role of these channels and the effects of their modulation in human arteries remain unknown. Here, we have assessed KCNQ gene expression and function in human arteries ex vivo. EXPERIMENTAL APPROACH: Fifty arteries (41 from visceral adipose tissue, 9 mesenteric arteries) were obtained from subjects undergoing elective surgery. Quantitative RT-PCR experiments using primers specific for all known KCNQ genes and immunohistochemsitry were used to show K(v) 7 channel expression. Wire myography and single cell electrophysiology assessed the function of these channels. KEY RESULTS: KCNQ4 was expressed in all arteries assessed, with variable contributions from KCNQ1, 3 and 5. KCNQ2 was not detected. K(v) 7 channel isoform-dependent staining was revealed in the smooth muscle layer. In functional studies, the K(v) 7 channel blockers, XE991 and linopirdine increased isometric tension and inhibited K(+) currents. In contrast, the K(v) 7.1-specific blocker chromanol 293B did not affect vascular tone. Two K(v) 7 channel activators, retigabine and acrylamide S-1, relaxed preconstricted arteries, actions reversed by XE991. K(v) 7 channel activators also suppressed spontaneous contractile activity in seven arteries, reversible by XE991. CONCLUSIONS AND IMPLICATIONS: This is the first study to demonstrate not only the presence of KCNQ gene products in human arteries but also their contribution to vascular tone ex vivo. LINKED ARTICLE: This article is commented on by Mani and Byron, pp. 38-41 of this issue. To view this commentary visit http://dx.doi.org/10.1111/j.1476-5381.2010.01065.x.


Assuntos
Artérias/metabolismo , Canais de Potássio KCNQ/genética , Idoso , Feminino , Humanos , Imuno-Histoquímica , Técnicas In Vitro , Canais de Potássio KCNQ/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , RNA Mensageiro/genética
12.
Am J Physiol Cell Physiol ; 299(5): C948-59, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20686072

RESUMO

Recently, overexpression of the genes TMEM16A and TMEM16B has been shown to produce currents qualitatively similar to native Ca(2+)-activated Cl(-) currents (I(ClCa)) in vascular smooth muscle. However, there is no information about this new gene family in vascular smooth muscle, where Cl(-) channels are a major depolarizing mechanism. Qualitatively similar Cl(-) currents were evoked by a pipette solution containing 500 nM Ca(2+) in smooth muscle cells isolated from BALB/c mouse portal vein, thoracic aorta, and carotid artery. Quantitative PCR using SYBR Green chemistry and primers specific for transmembrane protein (TMEM) 16A or the closely related TMEM16B showed TMEM16A expression as follows: portal vein > thoracic aorta > carotid artery > brain. In addition, several alternatively spliced variant transcripts of TMEM16A were detected. In contrast, TMEM16B expression was very low in smooth muscle. Western blot analysis with different antibodies directed against TMEM16A revealed a number of products with a consistent band at ∼120 kDa, except portal vein, where an 80-kDa band predominated. TMEM16A protein was identified in the smooth muscle layers of 4-µm-thick slices of portal vein, thoracic aorta, and carotid artery. In isolated myocytes, fluorescence specific to a TMEM16A antibody was detected diffusely throughout the cytoplasm, as well as near the membrane. The same antibody used in Western blot analysis of lysates from vascular tissues also recognized an ∼147-kDa mouse TMEM16A-green fluorescent protein (GFP) fusion protein expressed in HEK 293 cells, which correlated to a similar band detected by a GFP antibody. Patch-clamp experiments revealed that I(ClCa) generated by transfection of TMEM16A-GFP in HEK 293 cells displayed remarkable similarities to I(ClCa) recorded in vascular myocytes, including slow kinetics, steep outward rectification, and a response similar to the pharmacological agent niflumic acid. This study shows that TMEM16A expression is robust in murine vascular smooth muscle cells, consolidating the view that this gene is a viable candidate for the native Ca(2+)-activated Cl(-) channel in this cell type.


Assuntos
Canais de Cloreto/metabolismo , Miócitos de Músculo Liso/fisiologia , Biossíntese de Proteínas , Isoformas de Proteínas/metabolismo , Processamento Alternativo , Animais , Anoctamina-1 , Linhagem Celular , Canais de Cloreto/genética , Perfilação da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Miócitos de Músculo Liso/citologia , Técnicas de Patch-Clamp , Isoformas de Proteínas/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Distribuição Tecidual
13.
Antimicrob Agents Chemother ; 54(8): 3241-54, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20498321

RESUMO

Type three secretion systems (TTSSs) are virulence factors found in many pathogenic Gram-negative species, including the family of pathogenic Yersinia spp. Yersinia pseudotuberculosis requires the translocation of a group of effector molecules, called Yops, to subvert the innate immune response and establish infection. Polarized transfer of Yops from bacteria to immune cells depends on several factors, including the presence of a functional TTSS, the successful attachment of Yersinia to the target cell, and translocon insertion into the target cell membrane. Here we employed a high-throughput screen to identify small molecules that block translocation of Yops into mammalian cells. We identified 6 compounds that inhibited translocation of effectors without affecting synthesis of TTSS components and secreted effectors, assembly of the TTSS, or secretion of effectors. One compound, C20, reduced adherence of Y. pseudotuberculosis to target cells. Additionally, the compounds caused leakage of Yops into the supernatant during infection and thus reduced polarized translocation. Furthermore, several molecules, namely, C20, C22, C24, C34, and C38, also inhibited ExoS-mediated cell rounding, suggesting that the compounds target factors that are conserved between Pseudomonas aeruginosa and Y. pseudotuberculosis. In summary, we have identified 6 compounds that specifically inhibit translocation of Yops into mammalian cells but not Yop synthesis or secretion.


Assuntos
Proteínas da Membrana Bacteriana Externa/antagonistas & inibidores , Ensaios de Triagem em Larga Escala/métodos , Transporte Proteico/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas , Yersinia pseudotuberculosis/efeitos dos fármacos , Aderência Bacteriana/efeitos dos fármacos , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Linhagem Celular , Meios de Cultivo Condicionados , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia , Regulação Bacteriana da Expressão Gênica , Humanos , Peso Molecular , Proteínas Recombinantes de Fusão/antagonistas & inibidores , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Yersinia pseudotuberculosis/metabolismo , Yersinia pseudotuberculosis/fisiologia , Inibidores de beta-Lactamases , beta-Lactamases/genética , beta-Lactamases/metabolismo
14.
Mol Microbiol ; 76(1): 236-59, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20199604

RESUMO

Yersinia pseudotuberculosis uses a type III secretion system (T3SS) to deliver effectors into host cells. A key component of the T3SS is the needle, which is a hollow tube on the bacterial surface through which effectors are secreted, composed of the YscF protein. To study needle assembly, we performed a screen for dominant-negative yscF alleles that prevented effector secretion in the presence of wild-type (WT) YscF. One allele, yscF-L54V, prevents WT YscF secretion and needle assembly, although purified YscF-L54V polymerizes in vitro. YscF-L54V binds to its chaperones YscE and YscG, and the YscF-L54V-EG complex targets to the T3SS ATPase, YscN. We propose that YscF-L54V stalls at a binding site in the needle assembly pathway following its release from the chaperones, which blocks the secretion of WT YscF and other early substrates required for building a needle. Interestingly, YscF-L54V does not affect the activity of pre-assembled actively secreting machines, indicating that a factor and/or binding site required for YscF secretion is absent from T3SS machines already engaged in effector secretion. Thus, substrate switching may involve the removal of an early substrate-specific binding site as a mechanism to exclude early substrates from Yop-secreting machines.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Mutação de Sentido Incorreto , Fatores de Virulência/metabolismo , Yersinia pseudotuberculosis/genética , Yersinia pseudotuberculosis/metabolismo , Substituição de Aminoácidos/genética , Substâncias Macromoleculares/metabolismo , Proteínas de Membrana/metabolismo , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Multimerização Proteica , Estrutura Terciária de Proteína
15.
Cardiovasc Res ; 87(3): 476-84, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20172862

RESUMO

AIMS: Calcium-activated chloride channels (CACCs) share common pharmacological properties with Kcnma1-encoded large conductance K(+) channels (BK(Ca) or K(Ca)1.1) and it has been suggested that they may co-exist in a macromolecular complex. As K(Ca)1.1 channels are known to localize to cholesterol and caveolin-rich lipid rafts (caveolae), the present study investigated whether Ca(2+)-sensitive Cl(-) currents in vascular myocytes were affected by the cholesterol depleting agent methyl-beta-cyclodextrin (M-betaCD). METHODS AND RESULTS: Calcium-activated chloride and potassium currents were recorded from single murine portal vein myocytes in whole cell voltage clamp. Western blot was undertaken following sucrose gradient ultracentrifugation using protein lysates from whole portal veins. Ca(2+)-activated Cl(-) currents were augmented by 3 mg mL(-1) M-betaCD with a rapid time course (t(0.5) = 1.8 min). M-betaCD had no effect on the bi-modal response to niflumic acid or anthracene-9-carboxylate but completely removed the inhibitory effects of the K(Ca)1.1 blockers, paxilline and tamoxifen, as well as the stimulatory effect of the K(Ca)1.1 activator NS1619. Discontinuous sucrose density gradients followed by western blot analysis revealed that the position of lipid raft markers caveolin and flotillin-2 was altered by 15 min application of 3 mg mL(-1) M-betaCD. The position of K(Ca)1.1 and the newly identified candidate for CACCs, TMEM16A, was also affected by M-betaCD. CONCLUSION: These data reveal that CACC properties are influenced by lipid raft integrity.


Assuntos
Canais de Cloreto/metabolismo , Colesterol/deficiência , Microdomínios da Membrana/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Animais , Anoctamina-1 , Western Blotting , Caveolinas/metabolismo , Centrifugação com Gradiente de Concentração , Canais de Cloreto/efeitos dos fármacos , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Microdomínios da Membrana/efeitos dos fármacos , Potenciais da Membrana , Proteínas de Membrana/metabolismo , Moduladores de Transporte de Membrana/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Proteínas de Neoplasias/metabolismo , Técnicas de Patch-Clamp , Veia Porta/metabolismo , Fatores de Tempo , beta-Ciclodextrinas/farmacologia
16.
J Bacteriol ; 189(1): 83-97, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17071752

RESUMO

The trafficking of effectors, termed Yops, from Yersinia spp. into host cells is a multistep process that requires the type III secretion system (TTSS). The TTSS has three main structural parts: a base, a needle, and a translocon, which work together to ensure the polarized movement of Yops directly from the bacterial cytosol into the host cell cytosol. To understand the interactions that take place at the interface between the tip of the TTSS needle and the translocon, we developed a screen to identify mutations in the needle protein YscF that separated its function in secretion from its role in translocation. We identified 25 translocation-defective (TD) yscF mutants, which fall into five phenotypic classes. Some classes exhibit aberrant needle structure and/or reduced levels of Yop secretion, consistent with known functions for YscF. Strikingly, two yscF TD classes formed needles and secreted Yops normally but displayed distinct translocation defects. Class I yscF TD mutants showed diminished pore formation, suggesting incomplete pore insertion and/or assembly. Class II yscF TD mutants formed pores but showed nonpolar translocation, suggesting unstable needle-translocon interactions. These results indicate that YscF functions in Yop secretion and translocation can be genetically separated. Furthermore, the identification of YscF residues that are required for the assembly of the translocon and/or productive interactions with the translocon has allowed us to initiate the mapping of the needle-translocon interface.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Membrana/metabolismo , Yersinia pseudotuberculosis/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Transporte Biológico , Linhagem Celular Tumoral , Humanos , Modelos Moleculares , Mutação , Infecções por Yersinia pseudotuberculosis/microbiologia
17.
Mol Biol Cell ; 18(2): 475-86, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17122363

RESUMO

The import of polytopic membrane proteins into the mitochondrial inner membrane (IM) is facilitated by Tim9p/Tim10p and Tim8p/Tim13p protein complexes in the intermembrane space (IMS). These complexes are proposed to act as chaperones by transporting the hydrophobic IM proteins through the aqueous IMS and preventing their aggregation. To examine the nature of this interaction, Tim23p molecules containing a single photoreactive cross-linking probe were imported into mitochondria in the absence of an IM potential where they associated with small Tim complexes in the IMS. On photolysis and immunoprecipitation, a probe located at a particular Tim23p site (27 different locations were examined) was found to react covalently with, in most cases, only one of the small Tim proteins. Tim8p, Tim9p, Tim10p, and Tim13p were therefore positioned adjacent to specific sites in the Tim23p substrate before its integration into the IM. This specificity of binding to Tim23p strongly suggests that small Tim proteins do not function solely as general chaperones by minimizing the exposure of nonpolar Tim23p surfaces to the aqueous medium, but may also align a folded Tim23p substrate in the proper orientation for delivery and integration into the IM at the TIM22 translocon.


Assuntos
Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Complexos Multiproteicos/metabolismo , Saccharomyces cerevisiae/metabolismo , Sítios de Ligação , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Mitocondriais/metabolismo , Conformação Proteica , Transporte Proteico , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato
18.
Invest New Drugs ; 21(1): 85-97, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12795533

RESUMO

PURPOSE: MG98 is a second generation phosphorothioate antisense oligodeoxynucleotide which is a highly specific inhibitor of translation of the mRNA for human DNA MeTase I (DNMT 1). This phase I study examined the toxicity and pharmacologic profile of MG98 administered as a continuous 21-day intravenous infusion every 4 weeks. PATIENTS AND METHODS: Fourteen patients with solid cancers received a total of 25 cycles of MG98 at doses ranging from 40 to 240 mg/m2/day. Steady-state concentrations of MG98 were measured as were several pharmacodynamic assessments including mRNA of the target gene, DNMT1, in PBMC. In addition, other potential surrogate markers of drug effects were explored, including hemoglobin F, Vimentin and GADD45. RESULTS: Dose limiting effects were drug-related reversible transaminase elevation and fatigue seen at doses of 240, 200 and 160 mg/m2/day. The dose level of 80 mg/m2/day was felt to be safe and tolerable when delivered on this schedule. No evidence of antitumor activity was observed. Although pharmacokinetic analysis revealed that at the higher dose levels, mean Css values of MG98 were approximately 10-fold times the IC50 values associated with target inhibition in vitro, the extent of MG98 penetration into target tumors in this trial was not determined. No consistent, dose-related changes in correlative markers including DNMT1 mRNA, hemoglobin F, Vimentin and GADD45, were observed. CONCLUSIONS: This schedule of MG98 given as a 21-day continuous intravenous infusion every 4 weeks was poorly tolerated in the highest doses; therefore, further disease-site specific evaluation of the efficacy of this agent will utilize a more favorable, intermittent dosing schedule. Pharmacodynamic evaluations undertaken in an attempt to explore and validate the biological mechanisms of MG98 did not show dose-related effects.


Assuntos
DNA (Citosina-5-)-Metiltransferases/genética , Neoplasias/tratamento farmacológico , Oligodesoxirribonucleotídeos/farmacologia , Oligonucleotídeos Antissenso/farmacologia , Adulto , Idoso , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/antagonistas & inibidores , DNA (Citosina-5-)-Metiltransferases/sangue , Relação Dose-Resposta a Droga , Esquema de Medicação , Feminino , Hemoglobina Fetal/análise , Humanos , Infusões Intravenosas , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Dose Máxima Tolerável , Pessoa de Meia-Idade , Oligodesoxirribonucleotídeos/administração & dosagem , Oligodesoxirribonucleotídeos/sangue , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos Antissenso/sangue , Proteínas/análise , Proteínas/genética , RNA Mensageiro/antagonistas & inibidores , RNA Mensageiro/sangue , Tionucleotídeos , Fatores de Tempo , Resultado do Tratamento , Regulação para Cima , Vimentina/sangue , Vimentina/genética , Proteínas GADD45
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...