Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
PLoS Genet ; 20(1): e1010851, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38190417

RESUMO

Blood vessels in different vascular beds vary in size, which is essential for their function and fluid flow along the vascular network. Molecular mechanisms involved in the formation of a vascular lumen of appropriate size, or tubulogenesis, are still only partially understood. Src homology 2 domain containing E (She) protein was previously identified in a screen for proteins that interact with Abelson (Abl)-kinase. However, its biological role has remained unknown. Here we demonstrate that She and Abl signaling regulate vessel size in zebrafish embryos and human endothelial cell culture. Zebrafish she mutants displayed increased endothelial cell number and enlarged lumen size of the dorsal aorta (DA) and defects in blood flow, eventually leading to the DA collapse. Vascular endothelial specific overexpression of she resulted in a reduced diameter of the DA, which correlated with the reduced arterial cell number and lower endothelial cell proliferation. Chemical inhibition of Abl signaling in zebrafish embryos caused a similar reduction in the DA diameter and alleviated the she mutant phenotype, suggesting that She acts as a negative regulator of Abl signaling. Enlargement of the DA size in she mutants correlated with an increased endothelial expression of claudin 5a (cldn5a), which encodes a protein enriched in tight junctions. Inhibition of cldn5a expression partially rescued the enlarged DA in she mutants, suggesting that She regulates DA size, in part, by promoting cldn5a expression. SHE knockdown in human endothelial umbilical vein cells resulted in a similar increase in the diameter of vascular tubes, and also increased phosphorylation of a known ABL downstream effector CRKL. These results argue that SHE functions as an evolutionarily conserved inhibitor of ABL signaling and regulates vessel and lumen size during vascular tubulogenesis.


Assuntos
Peixe-Zebra , Domínios de Homologia de src , Animais , Humanos , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , China , Etnicidade , Transdução de Sinais/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Claudina-5
2.
Am J Pathol ; 194(4): 574-598, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37838010

RESUMO

This study sought to define key molecules and signals controlling major steps in vascular morphogenesis, and how these signals regulate pericyte recruitment and pericyte-induced basement membrane deposition. The morphogenic impact of endothelial cell (EC) expression of activating mutants of Kirsten rat sarcoma virus (kRas), mitogen-activated protein kinase 1 (Mek1), phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), Akt serine/threonine kinase 1 (Akt1), Ras homolog enriched in brain (Rheb) Janus kinase 2 (Jak2), or signal transducer and activator of transcription 3 (Stat3) expression versus controls was evaluated, along with EC signaling events, pharmacologic inhibitor assays, and siRNA suppression experiments. Primary stimulators of EC lumen formation included kRas, Akt1, and Mek1, whereas PIK3CA and Akt1 stimulated a specialized type of cystic lumen formation. In contrast, the key drivers of EC sprouting behavior were Jak2, Stat3, Mek1, PIK3CA, and mammalian target of rapamycin (mTor). These conclusions are further supported by pharmacologic inhibitor and siRNA suppression experiments. EC expression of active Akt1, kRas, and PIK3CA led to markedly dysregulated lumen formation coupled to strongly inhibited pericyte recruitment and basement membrane deposition. For example, activated Akt1 expression in ECs excessively stimulated lumen formation, decreased EC sprouting behavior, and showed minimal pericyte recruitment with reduced mRNA expression of platelet-derived growth factor-BB, platelet-derived growth factor-DD, and endothelin-1, critical EC-derived factors known to stimulate pericyte invasion. The study identified key signals controlling fundamental steps in capillary morphogenesis and maturation and provided mechanistic details on why EC activating mutations induced a capillary deficiency state with abnormal lumens, impaired pericyte recruitment, and basement deposition: predisposing stimuli for the development of vascular malformations.


Assuntos
Células Endoteliais , Proteínas Proto-Oncogênicas p21(ras) , Proteínas Proto-Oncogênicas p21(ras)/genética , Células Endoteliais/metabolismo , Morfogênese/genética , Fator de Crescimento Derivado de Plaquetas/metabolismo , Mutação , RNA Interferente Pequeno/metabolismo , Classe I de Fosfatidilinositol 3-Quinases/metabolismo
3.
Am J Pathol ; 193(12): 2203-2217, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37689384

RESUMO

Five growth factors [ie, insulin, fibroblast growth factor-2 (FGF-2), stem cell factor, IL-3, and stromal-derived factor 1α] in combination are necessary for human endothelial cells (ECs) to undergo tube morphogenesis, a process requiring both lumen formation and sprouting behavior. This study investigated why these factors are required by subdividing the factors into 4 separate groups: insulin-only, insulin and FGF-2, no FGF-2 (all factors but without FGF-2), and all factors. The study found that the insulin-only condition failed to support EC morphogenesis or survival, the insulin and FGF-2 condition supported primarily EC lumen formation, and the no FGF-2 condition supported EC sprouting behavior. By comparison, the all-factors condition more strongly stimulated both EC lumen formation and sprouting behavior, and signaling analysis revealed prolonged stimulation of multiple promorphogenic signals coupled with inhibition of proregressive signals. Pharmacologic inhibition of Jak kinases more selectively blocked EC sprouting behavior, whereas inhibition of Raf, phosphatidylinositol 3-kinase, and Akt kinases showed selective blockade of lumen formation. Inhibition of Src family kinases and Notch led to increased sprouting coupled to decreased lumen formation, whereas inhibition of Pak, Mek, and mammalian target of rapamycin kinases blocked both sprouting and lumen formation. These findings reveal novel downstream biological and signaling activities of defined factors that are required for the assembly of human EC-lined capillary tube networks.


Assuntos
Células Endoteliais , Insulinas , Humanos , Células Endoteliais/metabolismo , Fator 2 de Crescimento de Fibroblastos/farmacologia , Fator 2 de Crescimento de Fibroblastos/metabolismo , Células Cultivadas , Morfogênese , Insulinas/metabolismo
4.
bioRxiv ; 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37461480

RESUMO

Blood vessels in different vascular beds vary in lumen diameter, which is essential for their function and fluid flow along the vascular network. Molecular mechanisms involved in the formation of a vascular lumen of appropriate size, or tubulogenesis, are still only partially understood. Src homology 2 domain containing E (She) protein was previously identified in a screen for proteins that interact with Abelson (Abl)-kinase. However, its biological role has remained unknown. Here we demonstrate that She and Abl signaling regulate vascular lumen size in zebrafish embryos and human endothelial cell culture. Zebrafish she mutants displayed increased endothelial cell number and enlarged lumen size of the dorsal aorta (DA) and defects in blood flow. Vascular endothelial specific overexpression of she resulted in a reduced diameter of the DA lumen, which correlated with the reduced arterial cell number and lower endothelial cell proliferation. Chemical inhibition of Abl signaling in zebrafish embryos caused a similar reduction in the DA diameter and alleviated the she mutant phenotype, suggesting that She acts as a negative regulator of Abl signaling. Enlargement of the DA lumen in she mutants correlated with an increased endothelial expression of claudin 5a and 5b (cldn5a / cldn5b), which encode proteins enriched in tight junctions. Inhibition of cldn5a expression partially rescued the enlarged DA in she mutants, suggesting that She regulates DA lumen size, in part, by promoting cldn5a expression. SHE knockdown in human endothelial umbilical vein cells resulted in a similar increase in the diameter of vascular tubes, and also increased phosphorylation of a known ABL downstream effector CRKL. These results argue that SHE functions as an evolutionarily conserved inhibitor of ABL signaling and regulates lumen size during vascular tubulogenesis.

5.
Arterioscler Thromb Vasc Biol ; 43(9): 1599-1616, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37409533

RESUMO

Because of structural and cellular differences (ie, degrees of matrix abundance and cross-linking, mural cell density, and adventitia), large and medium-sized vessels, in comparison to capillaries, react in a unique manner to stimuli that induce vascular disease. A stereotypical vascular injury response is ECM (extracellular matrix) remodeling that occurs particularly in larger vessels in response to injurious stimuli, such as elevated angiotensin II, hyperlipidemia, hyperglycemia, genetic deficiencies, inflammatory cell infiltration, or exposure to proinflammatory mediators. Even with substantial and prolonged vascular damage, large- and medium-sized arteries, persist, but become modified by (1) changes in vascular wall cellularity; (2) modifications in the differentiation status of endothelial cells, vascular smooth muscle cells, or adventitial stem cells (each can become activated); (3) infiltration of the vascular wall by various leukocyte types; (4) increased exposure to critical growth factors and proinflammatory mediators; and (5) marked changes in the vascular ECM, that remodels from a homeostatic, prodifferentiation ECM environment to matrices that instead promote tissue reparative responses. This latter ECM presents previously hidden matricryptic sites that bind integrins to signal vascular cells and infiltrating leukocytes (in coordination with other mediators) to proliferate, invade, secrete ECM-degrading proteinases, and deposit injury-induced matrices (predisposing to vessel wall fibrosis). In contrast, in response to similar stimuli, capillaries can undergo regression responses (rarefaction). In summary, we have described the molecular events controlling ECM remodeling in major vascular diseases as well as the differential responses of arteries versus capillaries to key mediators inducing vascular injury.


Assuntos
Doenças Vasculares , Lesões do Sistema Vascular , Humanos , Células Endoteliais , Lesões do Sistema Vascular/metabolismo , Matriz Extracelular/metabolismo , Túnica Adventícia , Doenças Vasculares/metabolismo , Remodelação Vascular
6.
Heliyon ; 9(6): e16954, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37346332

RESUMO

Background and objectives: Medical science needs to further elucidate the role of ultraviolet radiation (UVR), geographic latitude, and the role of vitamin D in the autoimmune disease multiple sclerosis (MS). We separated several papers into categories out of the thousands published and used their conclusions to explore the relationship between UVR and MS. Relevance: MS is increasing in incidence, particularly in women where MS is two to three times that in men and particularly severe in African Americans. Methods: We collected UVR data at our observatory in Central Maine and calculated the average coefficient of variation (CVUVR) for each month for 15 years (2007-2021, inclusive). Results: The month of conception (MOC) is more important than the month of birth (MOB) in explaining how UVR triggers the variable genetic predisposition to MS. We hypothesize that the rapidly increasing CVUVR is important in preventing an increase in the activity of the vitamin D receptor (VDR) from August to December, which then requires a higher intensity of UVR later in life to suppress the immune system, therefore predisposing to more MS. Limitations: One observatory at about 44° latitude. Conclusions: While variation in UVR is important at the MOC if UVR exceeds a threshold (e.g., if the sunspot number equals or is greater than 90, usually at a solar cycle MAX, or at elevations above approximately 3,000 feet above sea level), the MS mitigating vitamin D-VDR mechanism is overwhelmed and the genotoxic effects of higher-intensity UVR promote MS in those with a genetic predisposition. What is new in this research: This paper offers a new concept in MS research.

7.
Am J Pathol ; 193(9): 1319-1334, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37328101

RESUMO

This study sought to identify potential mechanisms by which k-RasV12-expressing endothelial cell (EC) tubes demonstrate an increased propensity to regress compared with controls. Activated k-Ras mutations play a role in a variety of pathological conditions, including arteriovenous malformations, which are prone to bleed, causing serious hemorrhagic complications. ECs expressing active k-RasV12 demonstrate markedly excessive lumen formation with widened and shortened tubes accompanied by reduced pericyte recruitment and basement membrane deposition, leading to deficient capillary network assembly. The current study showed that active k-Ras-expressing ECs secreted greater amounts of MMP-1 proenzyme compared with control ECs, and readily converted it to increased active MMP-1 levels through the action of plasmin or plasma kallikrein (generated from their added zymogens). Active MMP-1 degraded three-dimensional collagen matrices, leading to more rapid and extensive regression of the active k-Ras-expressing EC tubes, in conjunction with matrix contraction, compared with control ECs. Under conditions where pericytes protect control EC tubes from plasminogen- and MMP-1-dependent tube regression, this failed to occur with k-RasV12 ECs, due to reduced pericyte interactions. In summary, k-RasV12-expressing EC vessels showed an increased propensity to regress in response to serine proteinases through accentuated levels of active MMP-1, a novel pathogenic mechanism that may underlie hemorrhagic events associated with arteriovenous malformation lesions.


Assuntos
Malformações Arteriovenosas , Metaloproteinase 1 da Matriz , Humanos , Metaloproteinase 1 da Matriz/metabolismo , Colágeno/metabolismo , Células Endoteliais/metabolismo , Fibrinolisina/metabolismo , Malformações Arteriovenosas/metabolismo
8.
Artigo em Inglês | MEDLINE | ID: mdl-35817544

RESUMO

The extracellular matrix represents a critical regulator of tissue vascularization during embryonic development and postnatal life. In this perspective, we present key information and concepts that focus on how the extracellular matrix controls capillary assembly, maturation, and stabilization, and, in addition, contributes to tissue stability and health. In particular, we present and discuss mechanistic details underlying (1) the role of the extracellular matrix in controlling different steps of vascular morphogenesis, (2) the ability of endothelial cells (ECs) and pericytes to coassemble into elongated and narrow capillary EC-lined tubes with associated pericytes and basement membrane matrices, and (3) the identification of specific growth factor combinations ("factors") and peptides as well as coordinated "factor" and extracellular matrix receptor signaling pathways that are required to form stabilized capillary networks.


Assuntos
Células Endoteliais , Matriz Extracelular , Humanos , Células Endoteliais/fisiologia , Morfogênese/fisiologia , Matriz Extracelular/metabolismo , Transdução de Sinais/fisiologia , Peptídeos e Proteínas de Sinalização Intercelular , Neovascularização Fisiológica/fisiologia , Endotélio Vascular , Pericitos/metabolismo
9.
Front Cell Dev Biol ; 10: 943533, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36072343

RESUMO

Here we address the functional importance and role of pericytes in capillary tube network assembly, an essential process that is required for vascularized tissue development, maintenance, and health. Healthy capillaries may be directly capable of suppressing human disease. Considerable advances have occurred in our understanding of the molecular and signaling requirements controlling EC lumen and tube formation in 3D extracellular matrices. A combination of SCF, IL-3, SDF-1α, FGF-2 and insulin ("Factors") in conjunction with integrin- and MT1-MMP-induced signaling are required for EC sprouting behavior and tube formation under serum-free defined conditions. Pericyte recruitment to the abluminal EC tube surface results in elongated and narrow tube diameters and deposition of the vascular basement membrane. In contrast, EC tubes in the absence of pericytes continue to widen and shorten over time and fail to deposit basement membranes. Pericyte invasion, recruitment and proliferation in 3D matrices requires the presence of ECs. A detailed analysis identified that EC-derived PDGF-BB, PDGF-DD, ET-1, HB-EGF, and TGFß1 are necessary for pericyte recruitment, proliferation, and basement membrane deposition. Blockade of these individual factors causes significant pericyte inhibition, but combined blockade profoundly interferes with these events, resulting in markedly widened EC tubes without basement membranes, like when pericytes are absent.

10.
Front Cell Dev Biol ; 10: 937982, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35927983

RESUMO

In this work, we sought to investigate the direct effects of proinflammatory mediators on lymphatic endothelial cell (LEC) capillaries and whether they might induce regression. Our laboratory has developed novel in-vitro, serum-free, lymphatic tubulogenesis assay models whereby human LEC tube networks readily form in either three-dimensional collagen or fibrin matrices. These systems were initially conceptualized in the hopes of better understanding the influence of proinflammatory mediators on LEC capillaries. In this work, we have screened and identified proinflammatory mediators that cause regression of LEC tube networks, the most potent of which is TNFα (tumor necrosis factor alpha), followed by IFNγ (interferon gamma) and thrombin. When these mediators were combined, even greater and more rapid lymphatic capillary regression occurred. Surprisingly, IL-1ß (interleukin-1 beta), one of the most potent and pathologic cytokines known, had no regressive effect on these tube networks. Finally, we identified new pharmacological drug combinations capable of rescuing LEC capillaries from regression in response to the potent combination of TNFα, IFNγ, and thrombin. We speculate that protecting lymphatic capillaries from regression may be an important step toward mitigating a wide variety of acute and chronic disease states, as lymphatics are believed to clear both proinflammatory cells and mediators from inflamed and damaged tissue beds. Overall, these studies identify key proinflammatory mediators, including TNFα, IFNγ, and thrombin, that induce regression of LEC tube networks, as well as identify potential therapeutic agents to diminish LEC capillary regression responses.

11.
Heliyon ; 8(3): e09197, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35368522

RESUMO

Background and objectives: The evaluation of the severity of patients afflicted with major mental illness (MMI) has been problematic because of confounding variables and genetic variability. There have been multiple studies that suggest several human diseases, especially schizophrenia, are predisposed to be born in certain months or seasons. This observation implied an epigenetic effect of sunlight, likely ultraviolet radiation (UVR), which is damaging to DNA, especially in an embryo. This paper outlines a method to evaluate the severity of schizophrenia (SZ), bipolar disorder (BPD), and schizoaffective disorder (SZ-AFF) using the month/year of birth of those affected compared to the month/year of birth of the general population (GP). Relevance: Our previous research found that more intense UVR (equal to or greater than 90 sunspot number (SSN)) had a negative effect on the average human lifespan. Also, human birth rates vary in frequency by month of birth reflecting variables like availability of food, sunlight, and other unknown epigenetic factors. We wanted to see if the patient month of birth varied from the average birth months of the general population and if UVR has an epigenetic effect promoting these diseases. Methods: We obtained the month and year of birth of 1,233 patients admitted over a 15-year period to Maine's largest state psychiatric hospital and counted the months of birth for each diagnosis of SZ, BPD, and SZ-AFF, and compared these results to the general population's birth months of 4,265,555 persons from U. S. Census Year 2006. The number of patients in each month was normalized to August and compared with the normalized birth months of the general population (GP). Plots of the normalized months were considered rates of change (e.g., derivatives) and their respective integrals gave domains of each mental illness relative to the GP. Normalizing the GP to unity was then related to the factor 1.28, e.g., 28% more entropy, deduced from the Sun's fractal dimension imprinted on biological organisms. Results: The percent of patients meeting our criterion for severity: SZ = 27%; BPD = 26%; SZ-AFF = 100%. Conclusions: High UVR intensity or a rapid increase in UVR in early gestation are likely epigenetic triggers of major mental illness. BPD is more epigenetically affected than SZ or SZ-AFF disorders. We found that 52% of 1,233 patients comprised the core function of a tertiary-care psychiatric hospital. Also, mental illness exacerbated when the median SSN doubled. This work also validates the Kraeplinian dichotomy. What is new in this research: This paper offers a new paradigm for evaluating the severity of MMI and supports significant epigenetic effects from UVR.

12.
Arterioscler Thromb Vasc Biol ; 42(2): 205-222, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34879709

RESUMO

OBJECTIVE: We sought to determine how endothelial cell (EC) expression of the activating k-Ras (kirsten rat sarcoma 2 viral oncogene homolog) mutation, k-RasV12, affects their ability to form lumens and tubes and interact with pericytes during capillary assembly Approach and Results: Using defined bioassays where human ECs undergo observable tubulogenesis, sprouting behavior, pericyte recruitment to EC-lined tubes, and pericyte-induced EC basement membrane deposition, we assessed the impact of EC k-RasV12 expression on these critical processes that are necessary for proper capillary network formation. This mutation, which is frequently seen in human ECs within brain arteriovenous malformations, was found to markedly accentuate EC lumen formation mechanisms, with strongly accelerated intracellular vacuole formation, vacuole fusion, and lumen expansion and with reduced sprouting behavior, leading to excessively widened tube networks compared with control ECs. These abnormal tubes demonstrate strong reductions in pericyte recruitment and pericyte-induced EC basement membranes compared with controls, with deficiencies in fibronectin, collagen type IV, and perlecan deposition. Analyses of signaling during tube formation from these k-RasV12 ECs reveals strong enhancement of Src (Src proto-oncogene, non-receptor tyrosine kinase), Pak2 (P21 [RAC1 (Rac family small GTPase 1)] activated kinase 2), b-Raf (v-raf murine sarcoma viral oncogene homolog B1), Erk (extracellular signal-related kinase), and Akt (AK strain transforming) activation and increased expression of PKCε (protein kinase C epsilon), MT1-MMP (membrane-type 1 matrix metalloproteinase), acetylated tubulin and CDCP1 (CUB domain-containing protein 1; most are known EC lumen regulators). Pharmacological blockade of MT1-MMP, Src, Pak, Raf, Mek (mitogen-activated protein kinase) kinases, Cdc42 (cell division cycle 42)/Rac1, and Notch markedly interferes with lumen and tube formation from these ECs. CONCLUSIONS: Overall, this novel work demonstrates that EC expression of k-RasV12 disrupts capillary assembly due to markedly excessive lumen formation coupled with strongly reduced pericyte recruitment and basement membrane deposition, which are critical pathogenic features predisposing the vasculature to develop arteriovenous malformations.


Assuntos
Membrana Basal/citologia , Capilares/fisiologia , Células Endoteliais/citologia , Neovascularização Fisiológica , Pericitos/citologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Membrana Basal/metabolismo , Linhagem Celular , Células Endoteliais/metabolismo , Expressão Gênica , Células Endoteliais da Veia Umbilical Humana , Humanos , Mutação , Pericitos/metabolismo
13.
Am J Pathol ; 191(12): 2245-2264, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34563512

RESUMO

Whether alterations in the microtubule cytoskeleton affect the ability of endothelial cells (ECs) to sprout and form branching networks of tubes was investigated in this study. Bioassays of human EC tubulogenesis, where both sprouting behavior and lumen formation can be rigorously evaluated, were used to demonstrate that addition of the microtubule-stabilizing drugs, paclitaxel, docetaxel, ixabepilone, and epothilone B, completely interferes with EC tip cells and sprouting behavior, while allowing for EC lumen formation. In bioassays mimicking vasculogenesis using single or aggregated ECs, these drugs induce ring-like lumens from single cells or cyst-like spherical lumens from multicellular aggregates with no evidence of EC sprouting behavior. Remarkably, treatment of these cultures with a low dose of the microtubule-destabilizing drug, vinblastine, led to an identical result, with complete blockade of EC sprouting, but allowing for EC lumen formation. Administration of paclitaxel in vivo markedly interfered with angiogenic sprouting behavior in developing mouse retina, providing corroboration. These findings reveal novel biological activities for pharmacologic agents that are widely utilized in multidrug chemotherapeutic regimens for the treatment of human malignant cancers. Overall, this work demonstrates that manipulation of microtubule stability selectively interferes with the ability of ECs to sprout, a necessary step to initiate and form branched capillary tube networks.


Assuntos
Inibidores da Angiogênese/farmacologia , Neovascularização Patológica/tratamento farmacológico , Paclitaxel/farmacologia , Animais , Vasos Sanguíneos/efeitos dos fármacos , Vasos Sanguíneos/crescimento & desenvolvimento , Células Cultivadas , Docetaxel/farmacologia , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/fisiologia , Endotélio Vascular/citologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/crescimento & desenvolvimento , Epotilonas/farmacologia , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Morfogênese/efeitos dos fármacos , Neovascularização Patológica/patologia , Neovascularização Fisiológica/efeitos dos fármacos , Paclitaxel/análogos & derivados
14.
Cell Immunol ; 364: 104360, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33866285

RESUMO

Ig-GAD2, an antigen-specific immune modulator, requires bone marrow (BM) cell transfer in order to restore beta (ß)-cell formation and induce recovery from established type 1 diabetes (T1D). The BM cells provide endothelial precursor cells (EPCs) that give rise to islet resident endothelial cells (ECs). This study shows that, during development of T1D, the immune attack causes collateral damage to the islet vascular network. The EPC-derived ECs repair and restore islet blood vessel integrity. In addition, ß-cell genetic tracing indicates that the newly formed ß-cells originate from residual ß-cells that escaped the immune attack and, unexpectedly, from ß-cell precursors. This indicates that the rejuvenated islet microenvironment invigorates formation of new ß-cells not only from residual ß-cells but also from precursor cells. This is twofold significant from the perspective of precursor cells as a safe reserve for restoration of ß-cell mass and its promise for therapy of T1D long after diagnosis.


Assuntos
Células da Medula Óssea/fisiologia , Diabetes Mellitus Tipo 1/terapia , Células Progenitoras Endoteliais/fisiologia , Fatores Imunológicos/uso terapêutico , Células Secretoras de Insulina/fisiologia , Proteínas Recombinantes de Fusão/uso terapêutico , Animais , Diferenciação Celular , Autorrenovação Celular , Células Cultivadas , Diabetes Mellitus Tipo 1/imunologia , Modelos Animais de Doenças , Glutamato Descarboxilase/genética , Humanos , Imunoglobulinas/genética , Fatores Imunológicos/genética , Camundongos , Camundongos Endogâmicos NOD , Proteínas Recombinantes de Fusão/genética , Regeneração , Fluxo Sanguíneo Regional
15.
Proc Natl Acad Sci U S A ; 117(42): 26494-26502, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33020273

RESUMO

During the progression of ocular diseases such as retinopathy of prematurity and diabetic retinopathy, overgrowth of retinal blood vessels results in the formation of pathological neovascular tufts that impair vision. Current therapeutic options for treating these diseases include antiangiogenic strategies that can lead to the undesirable inhibition of normal vascular development. Therefore, strategies that eliminate pathological neovascular tufts while sparing normal blood vessels are needed. In this study we exploited the hyaloid vascular network in murine eyes, which naturally undergoes regression after birth, to gain mechanistic insights that could be therapeutically adapted for driving neovessel regression in ocular diseases. We found that endothelial cells of regressing hyaloid vessels underwent down-regulation of two structurally related E-26 transformation-specific (ETS) transcription factors, ETS-related gene (ERG) and Friend leukemia integration 1 (FLI1), prior to apoptosis. Moreover, the small molecule YK-4-279, which inhibits the transcriptional and biological activity of ETS factors, enhanced hyaloid regression in vivo and drove Human Umbilical Vein Endothelial Cells (HUVEC) tube regression and apoptosis in vitro. Importantly, exposure of HUVECs to sheer stress inhibited YK-4-279-induced apoptosis, indicating that low-flow vessels may be uniquely susceptible to YK-4-279-mediated regression. We tested this hypothesis by administering YK-4-279 to mice in an oxygen-induced retinopathy model that generates disorganized and poorly perfused neovascular tufts that mimic human ocular diseases. YK-4-279 treatment significantly reduced neovascular tufts while sparing healthy retinal vessels, thereby demonstrating the therapeutic potential of this inhibitor.


Assuntos
Olho/irrigação sanguínea , Proteínas Oncogênicas/metabolismo , Proteína Proto-Oncogênica c-fli-1/metabolismo , Regulador Transcricional ERG/metabolismo , Inibidores da Angiogênese/farmacologia , Animais , Animais Recém-Nascidos , Apoptose/efeitos dos fármacos , Vasos Sanguíneos/patologia , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Indóis/farmacologia , Camundongos , Oxigênio/metabolismo , Proteínas Proto-Oncogênicas c-ets/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-ets/metabolismo , Vasos Retinianos/patologia
16.
Arterioscler Thromb Vasc Biol ; 40(12): 2891-2909, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33086871

RESUMO

OBJECTIVE: In this work, we have sought to define growth factor requirements and the signaling basis for different stages of human vascular morphogenesis and maturation. Approach and Results: Using a serum-free model of endothelial cell (EC) tube morphogenesis in 3-dimensional collagen matrices that depends on a 5 growth factor combination, SCF (stem cell factor), IL (interleukin)-3, SDF (stromal-derived factor)-1α, FGF (fibroblast growth factor)-2, and insulin (factors), we demonstrate that VEGF (vascular endothelial growth factor) pretreatment of ECs for 8 hours (ie, VEGF priming) leads to marked increases in the EC response to the factors which includes; EC tip cells, EC tubulogenesis, pericyte recruitment and proliferation, and basement membrane deposition. VEGF priming requires VEGFR2, and the effect of VEGFR2 is selective to the priming response and does not affect factor-dependent tubulogenesis in the absence of priming. Key molecule and signaling requirements for VEGF priming include RhoA, Rock1 (Rho-kinase), PKCα (protein kinase C α), and PKD2 (protein kinase D2). siRNA suppression or pharmacological blockade of these molecules and signaling pathways interfere with the ability of VEGF to act as an upstream primer of downstream factor-dependent EC tube formation as well as pericyte recruitment. VEGF priming was also associated with the formation of actin stress fibers, activation of focal adhesion components, upregulation of the EC factor receptors, c-Kit, IL-3Rα, and CXCR4 (C-X-C chemokine receptor type 4), and upregulation of EC-derived PDGF (platelet-derived growth factor)-BB, PDGF-DD, and HB-EGF (heparin-binding epidermal growth factor) which collectively affect pericyte recruitment and proliferation. CONCLUSIONS: Overall, this study defines a signaling signature for a separable upstream VEGF priming step, which can activate ECs to respond to downstream factors that are necessary to form branching tube networks with associated mural cells.


Assuntos
Indutores da Angiogênese/farmacologia , Comunicação Celular/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Pericitos/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia , Comunicação Celular/genética , Células Cultivadas , Técnicas de Cocultura , Regulação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Neovascularização Fisiológica/genética , Fosforilação , Transdução de Sinais , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/agonistas , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
17.
Arterioscler Thromb Vasc Biol ; 40(11): 2632-2648, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32814441

RESUMO

OBJECTIVE: We sought to identify and investigate the functional role of the major endothelial cell (EC)-derived factors that control pericyte recruitment to EC tubes and pericyte-induced tube maturation during capillary network formation. Approach and Results: We identify PDGF (platelet-derived growth factor)-BB, PDGF-DD, ET (endothelin)-1, TGF (transforming growth factor)-ß, and HB-EGF (heparin-binding epidermal growth factor), as the key individual and combined regulators of pericyte assembly around EC tubes. Using novel pericyte only assays, we demonstrate that PDGF-BB, PDGF-DD, and ET-1 are the primary direct drivers of pericyte invasion. Their addition to pericytes induces invasion as if ECs were present. In contrast, TGF-ß and HB-EGF have minimal ability to directly stimulate pericyte invasion. In contrast, TGF-ß1 can act as an upstream pericyte primer to stimulate invasion in response to PDGFs and ET-1. HB-EGF stimulates pericyte proliferation along with PDGFs and ET-1. Using EC-pericyte cocultures, individual, or combined blockade of these EC-derived factors, or their pericyte receptors, using neutralizing antibodies or chemical inhibitors, respectively, interferes with pericyte recruitment and proliferation. As individual factors, PDGF-BB and ET-1 have the strongest impact on these events. However, when the blocking reagents are combined to interfere with each of the above factors or their receptors, more dramatic and profound blockade of pericyte recruitment, proliferation, and pericyte-induced basement membrane deposition occurs. Under these conditions, ECs form tubes that become much wider and less elongated as if pericytes were absent. CONCLUSIONS: Overall, these new studies define and characterize a functional role for key EC-derived factors controlling pericyte recruitment, proliferation, and pericyte-induced basement membrane deposition during capillary network assembly.


Assuntos
Proteínas Angiogênicas/metabolismo , Encéfalo/irrigação sanguínea , Capilares/metabolismo , Movimento Celular , Células Endoteliais da Veia Umbilical Humana/metabolismo , Neovascularização Fisiológica , Comunicação Parácrina , Pericitos/metabolismo , Proteínas Angiogênicas/farmacologia , Becaplermina/metabolismo , Capilares/citologia , Capilares/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células , Células Cultivadas , Técnicas de Cocultura , Endotelina-1/metabolismo , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Linfocinas/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Comunicação Parácrina/efeitos dos fármacos , Pericitos/efeitos dos fármacos , Fator de Crescimento Derivado de Plaquetas/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo
18.
PLoS One ; 15(6): e0235116, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32569321

RESUMO

Here, we examine known GTPase regulators of vesicle trafficking events to assess whether they affect endothelial cell (EC) lumen and tube formation. We identify novel roles for the small GTPases Rab3A, Rab3B, Rab8A, Rab11A, Rab27A, RalA, RalB and caveolin-1 in co-regulating membrane trafficking events that control EC lumen and tube formation. siRNA suppression of individual GTPases such as Rab3A, Rab8A, and RalB markedly inhibit tubulogenesis, while greater blockade is observed with combinations of siRNAs such as Rab3A and Rab3B, Rab8A and Rab11A, and RalA and RalB. These combinations of siRNAs also disrupt very early events in lumen formation including the formation of intracellular vacuoles. In contrast, knockdown of the endocytosis regulator, Rab5A, fails to inhibit EC tube formation. Confocal microscopy and real-time videos reveal that caveolin-1 strongly labels intracellular vacuoles and localizes to the EC apical surface as they fuse to form the luminal membrane. In contrast, Cdc42 and Rab11A localize to a perinuclear, subapical region where intracellular vacuoles accumulate and fuse during lumen formation. Our new data demonstrates that EC tubulogenesis is coordinated by a series of small GTPases to control polarized membrane trafficking events to generate, deliver, and fuse caveolin-1-labeled vacuoles to create the apical membrane surface.


Assuntos
Caveolina 1/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Vacúolos/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Membrana Celular/metabolismo , Colágeno/metabolismo , Exocitose , Proteínas de Fluorescência Verde/metabolismo , Humanos , Modelos Biológicos , Transporte Proteico , RNA Interferente Pequeno/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas ral de Ligação ao GTP/metabolismo , Quinases da Família src/metabolismo
19.
Nat Commun ; 11(1): 1204, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32139674

RESUMO

Anti-angiogenic therapies have generated significant interest for their potential to combat tumor growth. However, tumor overproduction of pro-angiogenic ligands can overcome these therapies, hampering success of this approach. To circumvent this problem, we target the resynthesis of phosphoinositides consumed during intracellular transduction of pro-angiogenic signals in endothelial cells (EC), thus harnessing the tumor's own production of excess stimulatory ligands to deplete adjacent ECs of the capacity to respond to these signals. Using zebrafish and human endothelial cells in vitro, we show ECs deficient in CDP-diacylglycerol synthase 2 are uniquely sensitive to increased vascular endothelial growth factor (VEGF) stimulation due to a reduced capacity to re-synthesize phosphoinositides, including phosphatidylinositol-(4,5)-bisphosphate (PIP2), resulting in VEGF-exacerbated defects in angiogenesis and angiogenic signaling. Using murine tumor allograft models, we show that systemic or EC specific suppression of phosphoinositide recycling results in reduced tumor growth and tumor angiogenesis. Our results suggest inhibition of phosphoinositide recycling provides a useful anti-angiogenic approach.


Assuntos
Inibidores da Angiogênese/farmacologia , Endotélio Vascular/metabolismo , Fosfatidilinositóis/metabolismo , Fatores de Crescimento do Endotélio Vascular/metabolismo , Aloenxertos/efeitos dos fármacos , Animais , Bovinos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Diacilglicerol Colinofosfotransferase/deficiência , Diacilglicerol Colinofosfotransferase/metabolismo , Endotélio Vascular/efeitos dos fármacos , Deleção de Genes , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Camundongos Knockout , Modelos Biológicos , Neovascularização Fisiológica/efeitos dos fármacos , Especificidade de Órgãos , Transdução de Sinais , Peixe-Zebra
20.
Arterioscler Thromb Vasc Biol ; 40(2): 365-377, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31852224

RESUMO

OBJECTIVE: In this work, we examine the molecular basis for capillary tube regression and identify key proregressive factors, signaling pathways, and pharmacological antagonists of this process. Approach and Results: We demonstrate that the proinflammatory mediators, IL (interleukin)-1ß, TNF (tumor necrosis factor) α, and thrombin, singly and in combination, are potent regulators of capillary tube regression in vitro. These proregressive factors, when added to endothelial cell-pericyte cocultures, led to selective loss of endothelial cell-lined tube networks, with retention and proliferation of pericytes despite the marked destruction of adjacent capillary tubes. Moreover, treatment of macrophages with the TLR (toll-like receptor) agonists Pam3CSK4 and lipopolysaccharide generates conditioned media with marked proregressive activity, that is completely blocked by a combination of neutralizing antibodies directed to IL-1ß and TNFα but not to other factors. The same combination of blocking antibodies, as well as the anti-inflammatory cytokine IL-10, interfere with macrophage-dependent hyaloid vasculature regression in mice suggesting that proinflammatory cytokine signaling regulates capillary regression in vivo. In addition, we identified a capillary regression signaling signature in endothelial cells downstream of these proregressive agents that is characterized by increased levels of ICAM-1 (intercellular adhesion molecule-1), phospho-p38, and phospho-MLC2 (myosin light chain-2) and decreased levels of phospho-Pak2, acetylated tubulin, phospho-cofilin, and pro-caspase3. Finally, we identified combinations of pharmacological agents (ie, FIST and FISTSB) that markedly rescue the proregressive activities of IL-1ß, TNFα, and thrombin, individually and in combination. CONCLUSIONS: Overall, these new studies demonstrate that the major proinflammatory mediators, IL-1ß, TNFα, and thrombin, are key regulators of capillary tube regression-a critical pathological process regulating human disease.


Assuntos
Capilares/metabolismo , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Inflamação/metabolismo , Trombina/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Capilares/patologia , Células Cultivadas , Modelos Animais de Doenças , Células Endoteliais/patologia , Endotélio Vascular/patologia , Feminino , Humanos , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...