Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genetics ; 221(1)2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35234908

RESUMO

Dosage compensation involves chromosome-wide gene regulatory mechanisms which impact higher order chromatin structure and are crucial for organismal health. Using a genetic approach, we identified Argonaute genes which promote dosage compensation in Caenorhabditis elegans. Dosage compensation in C. elegans hermaphrodites is initiated by the silencing of xol-1 and subsequent activation of the dosage compensation complex which binds to both hermaphrodite X chromosomes and reduces transcriptional output by half. A hallmark phenotype of dosage compensation mutants is decondensation of the X chromosomes. We characterized this phenotype in Argonaute mutants using X chromosome paint probes and fluorescence microscopy. We found that while nuclear Argonaute mutants hrde-1 and nrde-3, as well as mutants for the piRNA Argonaute prg-1, exhibit derepression of xol-1 transcripts, they also affect X chromosome condensation in a xol-1-independent manner. We also characterized the physiological contribution of Argonaute genes to dosage compensation using genetic assays and found that hrde-1 and nrde-3 contribute to healthy dosage compensation both upstream and downstream of xol-1.


Assuntos
Proteínas de Caenorhabditis elegans , Transtornos do Desenvolvimento Sexual , Animais , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Transtornos do Desenvolvimento Sexual/genética , Mecanismo Genético de Compensação de Dose , Feminino , Humanos , Masculino , Interferência de RNA , Cromossomo X/genética , Cromossomo X/metabolismo
2.
PLoS Genet ; 14(5): e1007382, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29768402

RESUMO

Condensin complexes are key determinants of higher-order chromatin structure and are required for mitotic and meiotic chromosome compaction and segregation. We identified a new role for condensin in the maintenance of sister chromatid cohesion during C. elegans meiosis. Using conventional and stimulated emission depletion (STED) microscopy we show that levels of chromosomally-bound cohesin were significantly reduced in dpy-28 mutants, which lack a subunit of condensin I. SYP-1, a component of the synaptonemal complex central region, was also diminished, but no decrease in the axial element protein HTP-3 was observed. Surprisingly, the two key meiotic cohesin complexes of C. elegans were both depleted from meiotic chromosomes following the loss of condensin I, and disrupting condensin I in cohesin mutants increased the frequency of detached sister chromatids. During mitosis and meiosis in many organisms, establishment of cohesion is antagonized by cohesin removal by Wapl, and we found that condensin I binds to C. elegans WAPL-1 and counteracts WAPL-1-dependent cohesin removal. Our data suggest that condensin I opposes WAPL-1 to promote stable binding of cohesin to meiotic chromosomes, thereby ensuring linkages between sister chromatids in early meiosis.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Meiose/genética , Complexos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Adenosina Trifosfatases/genética , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/genética , Cromátides/genética , Cromátides/metabolismo , Proteínas Cromossômicas não Histona/genética , Segregação de Cromossomos/genética , Proteínas de Ligação a DNA/genética , Hibridização in Situ Fluorescente , Peptídeos e Proteínas de Sinalização Intercelular/genética , Complexos Multiproteicos/genética , Mutação , Proteínas Nucleares/genética , Interferência de RNA , Complexo Sinaptonêmico/genética , Complexo Sinaptonêmico/metabolismo , Coesinas
3.
PLoS Genet ; 12(9): e1006341, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27690361

RESUMO

Higher order chromosome structure and nuclear architecture can have profound effects on gene regulation. We analyzed how compartmentalizing the genome by tethering heterochromatic regions to the nuclear lamina affects dosage compensation in the nematode C. elegans. In this organism, the dosage compensation complex (DCC) binds both X chromosomes of hermaphrodites to repress transcription two-fold, thus balancing gene expression between XX hermaphrodites and XO males. X chromosome structure is disrupted by mutations in DCC subunits. Using X chromosome paint fluorescence microscopy, we found that X chromosome structure and subnuclear localization are also disrupted when the mechanisms that anchor heterochromatin to the nuclear lamina are defective. Strikingly, the heterochromatic left end of the X chromosome is less affected than the gene-rich middle region, which lacks heterochromatic anchors. These changes in X chromosome structure and subnuclear localization are accompanied by small, but significant levels of derepression of X-linked genes as measured by RNA-seq, without any observable defects in DCC localization and DCC-mediated changes in histone modifications. We propose a model in which heterochromatic tethers on the left arm of the X cooperate with the DCC to compact and peripherally relocate the X chromosomes, contributing to gene repression.

4.
Artigo em Inglês | MEDLINE | ID: mdl-27777629

RESUMO

BACKGROUND: In C. elegans, in order to equalize gene expression between the sexes and balance X and autosomal expression, two steps are believed to be required. First, an unknown mechanism is hypothesized to upregulate the X chromosome in both sexes. This mechanism balances the X to autosomal expression in males, but creates X overexpression in hermaphrodites. Therefore, to restore the balance, hermaphrodites downregulate gene expression twofold on both X chromosomes. While many studies have focused on X chromosome downregulation, the mechanism of X upregulation is not known. RESULTS: To gain more insight into X upregulation, we studied the effects of chromatin condensation and histone acetylation on gene expression levels in male C. elegans. We have found that the H4K16 histone acetyltransferase MYS-1/Tip60 mediates dramatic decondensation of the male X chromosome as measured by FISH. However, RNA-seq analysis revealed that MYS-1 contributes only slightly to upregulation of gene expression on the X chromosome. These results suggest that the level of chromosome decondensation does not necessarily correlate with the degree of gene expression change in vivo. Furthermore, the X chromosome is more sensitive to MYS-1-mediated decondensation than the autosomes, despite similar levels of H4K16ac on all chromosomes, as measured by ChIP-seq. H4K16ac levels weakly correlate with gene expression levels on both the X and the autosomes, but highly expressed genes on the X chromosome do not contain exceptionally high levels of H4K16ac. CONCLUSION: These results indicate that H4K16ac and chromosome decondensation influence regulation of the male X chromosome; however, they do not fully account for the high levels of gene expression observed on the X chromosomes.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Histona Acetiltransferases/metabolismo , Cromossomo X/metabolismo , Acetilação , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Imunoprecipitação da Cromatina , Mecanismo Genético de Compensação de Dose , Expressão Gênica , Histona Acetiltransferases/genética , Histonas/metabolismo , Hibridização in Situ Fluorescente , Masculino , Análise de Sequência de DNA , Cromossomo X/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA