Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 14(10): 5698-705, 2014 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-25211306

RESUMO

While block copolymer lithography has been broadly applied as a bottom-up patterning technique, only a few nanopattern symmetries, such as hexagonally packed dots or parallel stripes, can be produced by spontaneous self-assembly of simple diblock copolymers; even a simple square packing has heretofore required more intricate macromolecular architectures or nanoscale substrate prepatterning. In this study, we demonstrate that square, rectangular, and rhombic arrays can be created via shear-alignment of distinct layers of cylinder-forming block copolymers, coupled with cross-linking of the layers using ultraviolet light. Furthermore, these block copolymer arrays can in turn be used as templates to fabricate dense, substrate-supported arrays of nanostructures comprising a wide variety of elements: deep (>50 nm) nanowells, nanoposts, and thin metal nanodots (3 nm thick, 35 nm pitch) are all demonstrated.

2.
ACS Nano ; 8(8): 8015-26, 2014 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-25107567

RESUMO

We study thin films of homopolymers (PS) and monolayers of cylinder-forming diblock copolymers (PS­PHMA) under shear. To this end, we employed both experiments and computer simulations that correctly take into account hydrodynamic interactions and chain entanglements. Excellent quantitative agreement for static as well as dynamic properties in both the homopolymer and diblock copolymer cases was achieved. In particular, we found that the homopolymer thin films exhibit a distinct shear thinning behavior, which is strongly correlated with the disentanglement and shear alignment of the constituent polymer chains. For the PS­PHMA films, we show that shear can be employed to induce long-range ordering to the spontaneously self-assembled microdomains, which is required for many applications such as the fabrication of nanowire arrays. We found that the impact of chemical incompatibility on the viscosity is only minor in shear-aligned films. Once the domains were aligned, the films exhibited an almost Newtonian response to shear because the cylindrical microdomains acted as guide rails, along which the constituent copolymer chains could simply slide. Furthermore, we developed a model for predicting the onset of shear alignment based on equilibrium dynamics data, and found good agreement with our shear simulations. The employed computational method holds promise for a faster and more cost-effective route for developing custom tailored materials.

3.
Langmuir ; 30(19): 5637-44, 2014 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-24784877

RESUMO

Flowcoating is a popular technique for generating thin (5-200 nm), substrate-supported polymer films. In this process, a reservoir of coating fluid is held between the horizontal substrate and a nearly horizontal blade above the substrate; a film of fluid is drawn out of the reservoir by moving the substrate. Accelerating the substrate produces a film with a thickness gradient, particularly useful for high-throughput measurements where film thickness is an important parameter. The present work compares experimental film thickness profiles with a model based on a Landau-Levich treatment to identify the experimental parameters which govern film thickness. The key parameters are the capillary number and the radius of curvature of the reservoir's static meniscus, which is set by the blade angle, gap height, solution reservoir volume, and contact angles of the fluid with the blade and substrate. The results show excellent quantitative agreement with the first-principles model; the model thus provides a design approach which allows a user to produce polymer thin films of virtually any desired thickness profile.


Assuntos
Membranas Artificiais , Polímeros/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA