Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ultrasound Med Biol ; 49(12): 2519-2526, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37730478

RESUMO

OBJECTIVE: A coupling bath of circulating, chilled, degassed water is essential to safe and precise acoustic transmittance during transcranial magnetic resonance-guided focused ultrasound (tMRgFUS) procedures, but the circulating water impairs the critical real-time magnetic resonance imaging (MRI). An iron-based coupling medium (IBCM) using iron oxide nanoparticles previously developed by our group increased the relaxivity of the coupling bath such that it appears to be invisible on MRI compared with degassed water. However, the nanoparticles also reduced the pressure threshold for cavitation. To address this concern for prefocal cavitation, our group recently developed an IBCM of electrosterically stabilized and aggregation-resistant poly(methacrylic acid)-coated iron oxide nanoparticles (PMAA-FeOX) with a similar capability to reduce the MR signal of degassed water. This study examines the effect of the PMAA-FeOX IBCM on the cavitation threshold. METHODS: Increasing concentrations of PMAA-FeOX nanoparticles in degassed, deionized water were placed at the focus of two different transducers to assess low and high duty-cycle pulsing parameters which are representative of two modes of focused ultrasound being investigated for tMRgFUS. Passive cavitation detection and high-speed optical imaging were used to measure cavitation threshold pressures. RESULTS: The mean cavitation threshold was determined in both cases to be indistinguishable from the degassed water control, between 6-8 MPa for high duty-cycle pulsing (CW) and between 25.5-26.5 MPa for very low duty-cycle pulsing. CONCLUSION: The findings of this study indicate that an IBCM of PMAA-FeOX nanoparticles is a possible solution to reducing MRI interference from the coupling bath without increasing the risk of prefocal cavitation.


Assuntos
Acústica , Imageamento por Ressonância Magnética , Imageamento por Ressonância Magnética/métodos , Probabilidade , Água , Espectroscopia de Ressonância Magnética
2.
Pharmaceutics ; 15(4)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37111642

RESUMO

Flash nanoprecipitation (FNP) is a turbulent mixing process capable of reproducibly producing polymer nanoparticles loaded with active pharmaceutical ingredients (APIs). The nanoparticles produced with this method consist of a hydrophobic core surrounded by a hydrophilic corona. FNP produces nanoparticles with very high loading levels of nonionic hydrophobic APIs. However, hydrophobic compounds with ionizable groups are not as efficiently incorporated. To overcome this, ion pairing agents (IPs) can be incorporated into the FNP formulation to produce highly hydrophobic drug salts that efficiently precipitate during mixing. We demonstrate the encapsulation of the PI3K inhibitor, LY294002, within poly(ethylene glycol)-b-poly(D,L lactic acid) nanoparticles. We investigated how incorporating two hydrophobic IPs (palmitic acid (PA) and hexadecylphosphonic acid (HDPA)) during the FNP process affected the LY294002 loading and size of the resulting nanoparticles. The effect of organic solvent choice on the synthesis process was also examined. While the presence of either hydrophobic IP effectively increased the encapsulation of LY294002 during FNP, HDPA resulted in well-defined colloidally stable particles, while the PA resulted in ill-defined aggregates. The incorporation of hydrophobic IPs with FNP opens the door for the intravenous administration of APIs that were previously deemed unusable due to their hydrophobic nature.

3.
Med Phys ; 49(12): 7373-7383, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36156266

RESUMO

PURPOSE: In this study, we examine the effects of a recently developed, iron-based coupling medium (IBCM) on guidance magnetic resonance (MR) scans during transcranial, magnetic-resonance-guided, focused ultrasound surgery (tMRgFUS) procedures. More specifically, this study tests the hypotheses that the use of the IBCM will (a) not adversely affect image quality, (b) remove aliasing from small field-of-view scans, and (c) decouple image quality from the motion state of the coupling fluid. METHODS: An IBCM, whose chemical synthesis and characterization are reported elsewhere, was used as a coupling medium during tMRgFUS procedures on gel phantoms. Guidance magnetization-prepared rapid-gradient-echo (MP-RAGE), TSE, and GRE scans were acquired with fields of view of 28 and 18 cm. Experiments were repeated with the IBCM in several distinct flow states. GRE scans were used to estimate temperature time courses as a gel target was insonated. IBCM performance was measured by computing (i) the root mean square difference (RMSD) of TSE and GRE pixel values acquired using water and the IBCM, relative to the use of water; (ii) through-time temperature uncertainty for GRE scans; and (iii) Bland-Altman analysis of the temperature time courses. Finally, guidance TSE and GRE scans of a human volunteer were acquired during a separate sham tMRgFUS procedure. As a control, all experiments were repeated using a water coupling medium. RESULTS: Use of the IBCM reduced RMSD in TSE scans by a factor of 4 or more for all fields of view and nonstationary motion states, but did not reduce RMSD estimates in MP-RAGE scans. With the coupling media in a stationary state, the IBCM altered estimates of temperature uncertainty relative to the use of water by less than 0.2°C. However, with a high flow state, the IBCM reduced temperature uncertainties by the statistically significant amounts (at the 0.01 level) of 0.5°C (28 cm field of view) and 5°C (18 cm field of view). Bland-Altman analyses found a 0.1°C ± 0.5°C difference between temperature estimates acquired using water and the IBCM as coupling media. Finally, scans of a human volunteer using the IBCM indicate more conspicuous grey/white matter contrast, a reduction in aliasing, and a less than 0.2°C change in temperature uncertainty. CONCLUSIONS: The use of an IBCM during tMRgFUS procedures does not adversely affect image quality for TSE and GRE scans, can decouple image quality from the motion state of the coupling fluid, and can remove aliasing from scans where the field of view is set to be much smaller than the spatial extent of the coupling fluid.


Assuntos
Ferro , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Temperatura , Água , Meios de Contraste
5.
J Nanobiotechnology ; 18(1): 16, 2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-31959180

RESUMO

BACKGROUND: The clustered regularly interspaced short palindromic repeats (CRISPR) and Cas9 protein system is a revolutionary tool for gene therapy. Despite promising reports of the utility of CRISPR-Cas9 for in vivo gene editing, a principal problem in implementing this new process is delivery of high molecular weight DNA into cells. RESULTS: Using poly(lactic-co-glycolic acid) (PLGA), a nanoparticle carrier was designed to deliver a model CRISPR-Cas9 plasmid into primary bone marrow derived macrophages. The engineered PLGA-based carriers were approximately 160 nm and fluorescently labeled by encapsulation of the fluorophore 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS pentacene). An amine-end capped PLGA encapsulated 1.6 wt% DNA, with an encapsulation efficiency of 80%. Release studies revealed that most of the DNA was released within the first 24 h and corresponded to ~ 2-3 plasmid copies released per nanoparticle. In vitro experiments conducted with murine bone marrow derived macrophages demonstrated that after 24 h of treatment with the PLGA-encapsulated CRISPR plasmids, the majority of cells were positive for TIPS pentacene and the protein Cas9 was detectable within the cells. CONCLUSIONS: In this work, plasmids for the CRISPR-Cas9 system were encapsulated in nanoparticles comprised of PLGA and were shown to induce expression of bacterial Cas9 in murine bone marrow derived macrophages in vitro. These results suggest that this nanoparticle-based plasmid delivery method can be effective for future in vivo applications of the CRISPR-Cas9 system.


Assuntos
Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas , Nanopartículas/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Animais , Proteína 9 Associada à CRISPR/metabolismo , DNA/química , Corantes Fluorescentes/química , Técnicas de Transferência de Genes , Macrófagos/metabolismo , Camundongos , Compostos de Organossilício/química , Plasmídeos , Transfecção
6.
Med Phys ; 46(12): 5444-5453, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31605643

RESUMO

PURPOSE: Acoustic coupling baths, nominally composed of degassed water, play important roles during transcranial focused ultrasound surgery. However, this large water bolus also degrades the quality of intraoperative magnetic resonance (MR) guidance imaging. In this study, we test the feasibility of using dilute, aqueous magnetite nanoparticle suspensions to suppress these image degradations while preserving acoustic compatibility. We examine the effects of these suspensions on metrics of image quality and acoustic compatibility for two types of transcranial focused ultrasound insonation regimes: low-duty cycle histotripsy procedures and high-duty cycle thermal ablation procedures. METHODS: Magnetic resonance guidance imaging was used to monitor thermal ablations of in vitro gel targets using a coupling bath composed of various concentrations of aqueous, suspended, magnetite nanoparticles in a clinical transcranial transducer under stationary and flowing conditions. Thermal deposition was monitored using MR thermometry simultaneous to insonation. Then, using normal degassed water as a coupling bath, various concentrations of aqueous, suspended, magnetite nanoparticles were placed at the center of this same transducer and insonated using high-duty cycle pulsing parameters. Passive cavitation detectors recorded cavitation emissions, which were then used to estimate the relative number of cavitation events per insonation (cavitation duty cycle) and the cavitation dose estimates of each nanoparticle concentration. Finally, the nanoparticle mixtures were exposed to low-duty cycle, histotripsy pulses. Passive cavitation detectors monitored cavitation emissions, which were used to estimate cavitation threshold pressures. RESULTS: The nanoparticles reduced the MR signal of the coupling bath by 90% in T2- and T2*-weighted images and also removed almost all imaging artifacts caused by coupling bath motion. The coupling baths caused <5% changes in peak temperature change achieved during sonication, as observed via MR thermometry. At low duty cycle insonations, the nanoparticles decreased the cavitation threshold pressure by about 15 ± 7% in a manner uncorrelated with nanoparticle concentration. At high duty cycle insonations, the 0.5 cavitation duty cycle acoustic power threshold varied linearly with nanoparticle concentration. CONCLUSIONS: Dilute aqueous magnetite nanoparticle suspensions effectively reduced MR imaging artifacts caused by the acoustic coupling bath. They also attenuated acoustic power deposition by <5%. For low duty cycle insonation regimes, the nanoparticles decreased the cavitation threshold by 15 ± 7%. However, for high-duty cycle regimes, the nanoparticles decreased the threshold for cavitation in proportion to nanoparticle concentration.


Assuntos
Acústica , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Imageamento por Ressonância Magnética , Nanopartículas de Magnetita , Cirurgia Assistida por Computador/métodos , Estudos de Viabilidade
7.
Adv Sci (Weinh) ; 6(3): 1801309, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30775227

RESUMO

Cancer drug delivery remains a formidable challenge due to systemic toxicity and inadequate extravascular transport of nanotherapeutics to cells distal from blood vessels. It is hypothesized that, in absence of an external driving force, the Salmonella enterica serovar Typhimurium could be exploited for autonomous targeted delivery of nanotherapeutics to currently unreachable sites. To test the hypothesis, a nanoscale bacteria-enabled autonomous drug delivery system (NanoBEADS) is developed in which the functional capabilities of the tumor-targeting S. Typhimurium VNP20009 are interfaced with poly(lactic-co-glycolic acid) nanoparticles. The impact of nanoparticle conjugation is evaluated on NanoBEADS' invasion of cancer cells and intratumoral transport in 3D tumor spheroids in vitro, and biodistribution in a mammary tumor model in vivo. It is found that intercellular (between cells) self-replication and translocation are the dominant mechanisms of bacteria intratumoral penetration and that nanoparticle conjugation does not impede bacteria's intratumoral transport performance. Through the development of new transport metrics, it is demonstrated that NanoBEADS enhance nanoparticle retention and distribution in solid tumors by up to a remarkable 100-fold without requiring any externally applied driving force or control input. Such autonomous biohybrid systems could unlock a powerful new paradigm in cancer treatment by improving the therapeutic index of chemotherapeutic drugs and minimizing systemic side effects.

8.
Langmuir ; 34(51): 15783-15794, 2018 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-30392355

RESUMO

Targeted drug delivery has great potential for improving therapeutic outcomes for many diseases. Polymeric nanocarriers can improve the targeted delivery of insoluble and toxic drugs but, to achieve this, it is important to tailor the particle properties. In this study, nanoparticles comprised of poly(ethylene oxide)- b-poly(d,l-lactic acid) (PEO- b-PDLLA) were made by flash nanoprecipitation while varying the compositions of the additives poly(l-lactic acid) (PLLA), a fluorophore 6,13-bis(triisopropylsylylethynyl) (TIPS) pentacene, and poly(acrylic acid)- b-poly(d,l-lactic acid) (PAA- b-PDLLA) to characterize their effects on size, ζ potential, fluorescence, and surface functionalization. The particle size was readily increased by addition of PLLA homopolymer up to ∼40 wt % without significant change to the ζ potential. The maximum nanoparticle fluorescence was at 0.5 wt % TIPS based on the PDLLA core and exhibited quenching that could be described by Förster resonant energy transfer. The cores of the particles were coupled with streptavidin through 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide coupling chemistry. Even without the added carboxylate groups from the PAA, the base PEO- b-PDLLA nanoparticles were conjugated with streptavidin at comparable levels while retaining the functionality of streptavidin for further biotinylated ligand binding.

9.
Bioconjug Chem ; 29(2): 420-430, 2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-29261297

RESUMO

Doxorubicin is an effective and widely used cancer chemotherapeutic agent, but its application is greatly compromised by its cumulative dose-dependent side effect of cardiotoxicity. A gold nanoparticle-based drug delivery system has been designed to overcome this limitation. Five novel thiolated doxorubicin analogs were synthesized and their biological activities evaluated. Two of these analogs and PEG stabilizing ligands were then conjugated to gold nanoparticles, and the resulting Au-Dox constructs were evaluated. The results show that release of native drug can be achieved by the action of reducing agents such as glutathione or under acidic conditions, but reductive drug release gave the cleanest drug release. Gold nanoparticles (Au-Dox) were prepared with different loadings of PEG and doxorubicin, and one formulation was evaluated for mammalian stability and toxicity. Plasma levels of doxorubicin in mice treated with Au-Dox were significantly lower than in mice treated with the same amount of doxorubicin, indicating that the construct is stable under physiological conditions. Treatment of mice with Au-Dox gave no histopathologically observable differences from mice treated with saline, while mice treated with an equivalent dose of doxorubicin showed significant histopathologically observable lesions.


Assuntos
Antibióticos Antineoplásicos/administração & dosagem , Doxorrubicina/administração & dosagem , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Ouro/química , Nanopartículas Metálicas/química , Neoplasias/tratamento farmacológico , Animais , Antibióticos Antineoplásicos/sangue , Antibióticos Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Doxorrubicina/sangue , Doxorrubicina/uso terapêutico , Humanos , Masculino , Camundongos , Neoplasias/patologia
10.
Protein Sci ; 26(4): 814-823, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28152563

RESUMO

Phafin2 is a phosphatidylinositol 3-phosphate (PtdIns(3)P) binding protein involved in the regulation of endosomal cargo trafficking and lysosomal induction of autophagy. Binding of Phafin2 to PtdIns(3)P is mediated by both its PH and FYVE domains. However, there are no studies on the structural basis, conformational stability, and lipid interactions of Phafin2 to better understand how this protein participates in signaling at the surface of endomembrane compartments. Here, we show that human Phafin2 is a moderately elongated monomer of ∼28 kDa with an intensity-average hydrodynamic diameter of ∼7 nm. Circular dichroism (CD) analysis indicates that Phafin2 exhibits an α/ß structure and predicts ∼40% random coil content in the protein. Heteronuclear NMR data indicates that a unique conformation of Phafin2 is present in solution and dispersion of resonances suggests that the protein exhibits random coiled regions, in agreement with the CD data. Phafin2 is stable, displaying a melting temperature of 48.4°C. The folding-unfolding curves, obtained using urea- and guanidine hydrochloride-mediated denaturation, indicate that Phafin2 undergoes a two-state native-to-denatured transition. Analysis of these transitions shows that the free energy change for urea- and guanidine hydrochloride-induced Phafin2 denaturation in water is ∼4 kcal mol-1 . PtdIns(3)P binding to Phafin2 occurs with high affinity, triggering minor conformational changes in the protein. Taken together, these studies represent a platform for establishing the structural basis of Phafin2 molecular interactions and the role of the two potentially redundant PtdIns(3)P-binding domains of the protein in endomembrane compartments.


Assuntos
Fosfatos de Fosfatidilinositol/química , Proteínas de Transporte Vesicular/química , Fosfatos de Fosfatidilinositol/metabolismo , Ligação Proteica , Domínios Proteicos , Relação Estrutura-Atividade , Termodinâmica , Proteínas de Transporte Vesicular/metabolismo
11.
Nanomedicine ; 13(3): 1255-1266, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28040495

RESUMO

Nanoparticle based drug delivery platforms have the potential to transform disease treatment paradigms and therapeutic strategies, especially in the context of pulmonary medicine. Once administered, nanoparticles disperse throughout the lung and many are phagocytosed by macrophages. However, there is a paucity of knowledge regarding cellular up-take dynamics of nanoparticles due largely to macrophage heterogeneity. To address this issue, we sought to better define nanoparticle up-take using polarized M1 and M2 macrophages and novel TIPS-pentacene loaded PEO-PDLLA nanoparticles. Our data reveal that primary macrophages polarized to either M1 or M2 phenotypes have similar levels of nanoparticle phagocytosis. Similarly, M1 and M2 polarized macrophages isolated from the lungs of mice following either acute (Th1) or allergic (Th2) airway inflammation also demonstrated equivalent levels of nanoparticle up-take. Together, these studies provide critical benchmark information pertaining to cellular up-take dynamics and biodistribution of nanoparticles in the context of clinically relevant inflammatory microenvironments.


Assuntos
Portadores de Fármacos/metabolismo , Compostos de Epóxi/metabolismo , Macrófagos/metabolismo , Nanopartículas/metabolismo , Compostos de Organossilício/administração & dosagem , Compostos de Organossilício/farmacocinética , Poliésteres/metabolismo , Animais , Asma , Células Cultivadas , Portadores de Fármacos/química , Compostos de Epóxi/química , Pulmão/metabolismo , Macrófagos/citologia , Camundongos Endogâmicos C57BL , Nanopartículas/química , Poliésteres/química , Distribuição Tecidual
13.
Chem Mater ; 28(9): 3024-3040, 2016 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37405207

RESUMO

Given the superior soft tissue contrasts obtained by MRI and the long residence times of magnetic nanoparticles (MNPs) in soft tissues, MNP-based theranostic systems are being developed for simultaneous imaging and treatment. However, development of such theranostic nanoformulations presents significant challenges of balancing the therapeutic and diagnostic functionalities in order to achieve optimum effect from both. Here we developed a simple theranostic nanoformulation based on magnetic nanoclusters (MNCs) stabilized by a bisphosphonate-modified poly(glutamic acid)-b-(ethylene glycol) block copolymer and complexed with cisplatin. The MNCs were decorated with luteinizing hormone releasing hormone (LHRH) to target LHRH receptors (LHRHr) overexpressed in ovarian cancer cells. The targeted MNCs significantly improved the uptake of the drug in cancer cells and decreased its IC50 compared to the nontargeted formulations. Also, the enhanced LHRHr-mediated uptake of the targeted MNCs resulted in enhancement in the T2-weighted negative contrast in cellular phantom gels. Taken together, the LHRH-conjugated MNCs show good potential as ovarian cancer theranostics.

14.
Int J Nanomedicine ; 10: 6055-74, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26451111

RESUMO

Natural products have been used in medicine for many years. Many top-selling pharmaceuticals are natural compounds or their derivatives. These plant- or microorganism-derived compounds have shown potential as therapeutic agents against cancer, microbial infection, inflammation, and other disease conditions. However, their success in clinical trials has been less impressive, partly due to the compounds' low bioavailability. The incorporation of nanoparticles into a delivery system for natural products would be a major advance in the efforts to increase their therapeutic effects. Recently, advances have been made showing that nanoparticles can significantly increase the bioavailability of natural products both in vitro and in vivo. Nanotechnology has demonstrated its capability to manipulate particles in order to target specific areas of the body and control the release of drugs. Although there are many benefits to applying nanotechnology for better delivery of natural products, it is not without issues. Drug targeting remains a challenge and potential nanoparticle toxicity needs to be further investigated, especially if these systems are to be used to treat chronic human diseases. This review aims to summarize recent progress in several key areas relevant to natural products in nanoparticle delivery systems for biomedical applications.


Assuntos
Produtos Biológicos/uso terapêutico , Nanomedicina/métodos , Nanopartículas/uso terapêutico , Neoplasias/tratamento farmacológico , Humanos
15.
J Am Chem Soc ; 137(24): 7881-8, 2015 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-26022213

RESUMO

The development of new nanoparticles as next-generation diagnostic and therapeutic ("theranostic") drug platforms is an active area of both chemistry and cancer research. Although numerous gadolinium (Gd) containing metallofullerenes as diagnostic magnetic resonance imaging (MRI) contrast agents have been reported, the metallofullerene cage surface, in most cases, consists of negatively charged carboxyl or hydroxyl groups that limit attractive forces with the cellular surface. It has been reported that nanoparticles with a positive charge will bind more efficiently to negatively charged phospholipid bilayer cellular surfaces, and will more readily undergo endocytosis. In this paper, we report the preparation of a new functionalized trimetallic nitride template endohedral metallofullerene (TNT EMF), Gd3N@C80(OH)x(NH2)y, with a cage surface bearing positively charged amino groups (-NH3(+)) and directly compare it with a similar carboxyl and hydroxyl functionalized derivative. This new nanoparticle was characterized by X-ray photoelectron spectroscopy (XPS), dynamic light scattering (DLS), and infrared spectroscopy. It exhibits excellent (1)H MR relaxivity. Previous studies have clearly demonstrated that the cytokine interleukin-13 (IL-13) effectively targets glioblastoma multiforme (GBM) cells, which are known to overexpress IL-13Rα2. We also report that this amino-coated Gd-nanoplatform, when subsequently conjugated with interleukin-13 peptide IL-13-Gd3N@C80(OH)x(NH2)y, exhibits enhanced targeting of U-251 GBM cell lines and can be effectively delivered intravenously in an orthotopic GBM mouse model.


Assuntos
Meios de Contraste/química , Fulerenos/química , Gadolínio/química , Glioblastoma/diagnóstico , Interleucina-13/química , Nanopartículas/química , Aminação , Animais , Linhagem Celular Tumoral , Humanos , Imageamento por Ressonância Magnética/métodos , Camundongos Nus , Modelos Moleculares
16.
Langmuir ; 30(6): 1580-7, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-24479874

RESUMO

We report the fabrication of magnetic particles comprised of clusters of iron oxide nanoparticles, 7.4 nm mean diameter, stabilized by a biocompatible, amphiphilic diblock copolymer, poly(ethylene oxide-b-D,L-lactide). Particles with quantitative incorporation of up to 40 wt % iron oxide and hydrodynamic sizes in the range of 80-170 nm were prepared. The particles consist of hydrophobically modified iron oxide nanoparticles within the core-forming polylactide block with the poly(ethylene oxide) forming a corona to afford aqueous dispersibility. The transverse relaxivities (r2) increased with average particle size and exceeded 200 s(-1) mM Fe(-1) at 1.4 T and 37 °C for iron oxide loadings above 30 wt %. These experimental relaxivities typically agreed to within 15% with the values predicted using analytical models of transverse relaxivity and cluster (particle core) size distributions derived from cryo-TEM measurements. Our results show that the theoretical models can be used for the rational design of biocompatible MRI contrast agents with tailored compositions and size distributions.


Assuntos
Meios de Contraste/química , Compostos Férricos/química , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita/química , Meios de Contraste/síntese química , Interações Hidrofóbicas e Hidrofílicas , Nanopartículas de Magnetita/ultraestrutura , Tamanho da Partícula , Poliésteres/química , Polietilenoglicóis/química , Polimerização
17.
J Am Chem Soc ; 136(6): 2630-6, 2014 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-24432974

RESUMO

Water-soluble derivatives of gadolinium-containing metallofullerenes have been considered to be excellent candidates for new magnetic resonance imaging (MRI) contrast agents because of their high relaxivity and characteristic encapsulation of the lanthanide ions (Gd(3+)), preventing their release into the bioenvironment. The trimetallic nitride template endohedral metallofullerenes (TNT EMFs) have further advantages of high stability, high relative yield, and encapsulation of three Gd(3+) ions per molecule as illustrated by the previously reported nearly spherical, Gd3N@I(h)-C80. In this study, we report the preparation and functionalization of a lower-symmetry EMF, Gd3N@C(s)-C84, with a pentalene (fused pentagons) motif and an egg-shaped structure. The Gd3N@C84 derivative exhibits a higher (1)H MR relaxivity compared to that of the Gd3N@C80 derivative synthesized the same way, at low (0.47 T), medium (1.4 T), and high (9.4 T) magnetic fields. The Gd3N@C(s)-C84 derivative exhibits a higher hydroxyl content and aggregate size, as confirmed by X-ray photoelectron spectroscopy (XPS) and dynamic light scattering (DLS) experiments, which could be the main reasons for the higher relaxivity.


Assuntos
Meios de Contraste/química , Fulerenos/química , Gadolínio/química , Imageamento por Ressonância Magnética
18.
Microsc Microanal ; 20(2): 338-45, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24331164

RESUMO

Understanding the fundamental properties of macromolecules has enhanced the development of emerging technologies used to improve biomedical research. Currently, there is a critical need for innovative platforms that can illuminate the function of biomedical reagents in a native environment. To address this need, we have developed an in situ approach to visualize the dynamic behavior of biomedically relevant macromolecules at the nanoscale. Newly designed silicon nitride devices containing integrated "microwells" were used to enclose active macromolecular specimens in liquid for transmission electron microscopy imaging purposes.We were able to successfully examine novel magnetic resonance imaging contrast reagents, micelle suspensions, liposome carrier vehicles, and transcribing viral assemblies. With each specimen tested, the integrated microwells adequately maintained macromolecules in discrete local environments while enabling thin liquid layers to be produced.


Assuntos
Substâncias Macromoleculares/ultraestrutura , Microscopia Eletrônica de Transmissão/métodos , Manejo de Espécimes/métodos , Meios de Contraste/análise , Lipossomos/ultraestrutura , Micelas , Vírus/ultraestrutura
19.
Mol Pharm ; 10(12): 4640-53, 2013 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-24116899

RESUMO

Clarithromycin (CLA) is an aminomacrolide antibiotic whose physical properties are fascinating and challenging. It has very poor solubility at neutral intestinal pH, but much better solubility under acidic conditions due to amine protonation. The improved solubility in an acid environment is confounded by the poor chemical stability of clarithromycin that is quite labile toward acid-catalyzed degradation. This creates a complex system under gastrointestinal (GI) conditions: dissolution in the stomach, degradation, potential for precipitation in the small intestine, and interplay with the formulation components. We report herein a study of amorphous solid dispersion (ASD) of CLA with carboxyl-containing cellulose derivatives, which have recently been shown to be excellent ASD matrices for maximizing oral bioavailability. This approach was intended to improve CLA solubility in neutral media while minimizing release in an acid environment, and thereby increase its uptake from the small intestine. Amorphous polymer/CLA nanoparticles were also prepared by high-shear mixing in a multi-inlet vortex mixer (MIVM). Different extents of release were observed at low pH from the various formulations. Thus the solubility increase from nanosizing was deleterious to the concentration of intact CLA obtained upon reaching small intestine conditions; the high extent of release at gastric pH led to complete degradation of CLA. Using pH-switch experiments, it was possible to separate the effects of loss of CLA from solution by crystallization vs. that from chemical degradation. It was found that the hydrophobic cellulose derivative cellulose acetate adipate propionate (CAAdP) was effective at protecting CLA from dissolution in the stomach, and preventing CLA decomposition at low pH; 54% of CLA in CAADP ASD was released intact, vs. 0% and 6% from HPMCAS and CMCAB ASDs, respectively. We conclude that protection against degradation is central to enhancing overall release of intact CLA from ASD formulations; the formulations studied herein have great promise for simultaneous CLA solubility enhancement and protection from loss to chemical degradation, thereby reducing dose requirements and potentially decreasing colonic exposure to CLA (reduced colonic exposure is expected to minimize killing of beneficial colonic bacteria by CLA).


Assuntos
Claritromicina/química , Disponibilidade Biológica , Celulose/análogos & derivados , Celulose/química , Química Farmacêutica/métodos , Cristalização/métodos , Estabilidade de Medicamentos , Concentração de Íons de Hidrogênio , Nanopartículas/química , Polímeros/química , Solubilidade
20.
J Mater Chem B ; 1(8): 1142-1149, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-25328679

RESUMO

Magnetic Block Ionomer Clusters (MBIClusters) with hydrophilic ionic cores and nonionic coronas have been prepared that have ultrahigh transverse NMR relaxivities together with capacities for incorporating high concentrations of polar antibiotic payloads. Magnetite-polymer nanoparticles were assembled by adsorbing the polyacrylate block of an aminofunctional poly(ethylene oxide-b-acrylate) (H2N-PEO-b-PAA) copolymer onto magnetite nanoparticles. The PEO blocks extended into aqueous media to keep the nanoparticles dispersed. Amines at the tips of the H2N-PEO corona were then linked through reaction with a PEO diacrylate oligomer to yield MBIClusters where the metal oxide in the precursor nanoparticles were distinctly separated by the hydrophilic polymer. The intensity average spacing between the magnetite nanoparticles within the clusters was estimated to be ~50 nm. These MBIClusters with hydrophilic intra-cluster space had transverse relaxivities (r2's) that increased from 190 to 604 s-1 mM Fe-1 measured at 1.4 T and 37 °C as their average sizes increased. The clusters were loaded with up to ~38 wt% of the multi-cationic drug gentamicin. MRI scans focused on the livers of mice demonstrated that these MBIClusters are sensitive contrast agents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...