Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
3.
Perspect Biol Med ; 49(2): 238-50, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16702707

RESUMO

John Platt's article "Strong Inference" (1964) suggested a general and effective method of scientific investigation. It describes a disciplined strategy of falsification of multiple, clearly formulated hypotheses that is used more regularly in some scientific fields than in others. Platt urged that strong inference be more widely and more systematically applied, particularly in slower-moving fields of science. The article has influenced integrative biological fields since its publication, ranging from ecology to psychology, and has had a substantial following in some of the social sciences. It has also evoked severe criticism for its idealization of certain fields as exemplars and for its imperfections in historiography and philosophy of science. I argue here that the article was more an inspirational tract than the development of a formal scientific methodology. Although both Platt's critics and his adherents appeared to take the article far too seriously, its influence has transcended its limitations.


Assuntos
Pesquisa Biomédica/história , Projetos de Pesquisa , História do Século XX , Humanos , Filosofia , Ciência , Estados Unidos
5.
Microbiol Mol Biol Rev ; 68(1): 1-108, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15007097

RESUMO

We present an analysis of over 1,100 of the approximately 10,000 predicted proteins encoded by the genome sequence of the filamentous fungus Neurospora crassa. Seven major areas of Neurospora genomics and biology are covered. First, the basic features of the genome, including the automated assembly, gene calls, and global gene analyses are summarized. The second section covers components of the centromere and kinetochore complexes, chromatin assembly and modification, and transcription and translation initiation factors. The third area discusses genome defense mechanisms, including repeat induced point mutation, quelling and meiotic silencing, and DNA repair and recombination. In the fourth section, topics relevant to metabolism and transport include extracellular digestion; membrane transporters; aspects of carbon, sulfur, nitrogen, and lipid metabolism; the mitochondrion and energy metabolism; the proteasome; and protein glycosylation, secretion, and endocytosis. Environmental sensing is the focus of the fifth section with a treatment of two-component systems; GTP-binding proteins; mitogen-activated protein, p21-activated, and germinal center kinases; calcium signaling; protein phosphatases; photobiology; circadian rhythms; and heat shock and stress responses. The sixth area of analysis is growth and development; it encompasses cell wall synthesis, proteins important for hyphal polarity, cytoskeletal components, the cyclin/cyclin-dependent kinase machinery, macroconidiation, meiosis, and the sexual cycle. The seventh section covers topics relevant to animal and plant pathogenesis and human disease. The results demonstrate that a large proportion of Neurospora genes do not have homologues in the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe. The group of unshared genes includes potential new targets for antifungals as well as loci implicated in human and plant physiology and disease.


Assuntos
Proteínas Fúngicas/genética , Genoma Fúngico , Neurospora crassa , Animais , Biologia Computacional , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Humanos , Micoses/microbiologia , Neurospora crassa/química , Neurospora crassa/genética , Neurospora crassa/metabolismo , Neurospora crassa/patogenicidade , Doenças das Plantas/microbiologia
7.
Nat Rev Genet ; 3(5): 397-403, 2002 05.
Artigo em Inglês | MEDLINE | ID: mdl-11988765

RESUMO

In the 1940s, studies with Neurospora pioneered the use of microorganisms in genetic analysis and provided the foundations for biochemical genetics and molecular biology. What has happened since this orange mould was used to show that genes control metabolic reactions? How did it come to be the fungal counterpart of Drosophila? We describe its continued use during the heyday of research with Escherichia coli and yeast, and its emergence as a biological model for higher fungi.


Assuntos
Microbiologia/história , Biologia Molecular/história , Neurospora crassa/genética , História do Século XIX , História do Século XX , História do Século XXI , Neurospora crassa/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...