Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mil Med ; 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39178132

RESUMO

INTRODUCTION: Nitric oxide (NO) is a lipophilic gas with potent antimicrobial activity. Several in vitro and in vivo studies have demonstrated the broad-spectrum antimicrobial activity of NO-releasing compounds against bacteria, viruses, and parasites. The objective of this study was to assess the efficacy of topical NO formations with sustained release on microbial reduction in wounds. MATERIALS AND METHODS: Swine was used as the preclinical animal model because of the similarities of porcine skin to human skin. Second-degree burn wounds were created in 3 pigs and then inoculated with Methicillin-resistant Staphylococcus aureus, Acinetobacter baumannii, or Candida albicans and covered with polyurethane film dressings to create biofilms. After 48 hours, wounds were then treated daily and then recovered for the bacterial burden assessments. Statistical analysis was performed using IBM SPSS statistics 27 using one-way ANOVA. RESULTS: All treatments significantly reduced (P ≤ .05) the bacterial counts between assessment days 4 and 7. Wounds treated with the NVN4000 (1.8%) exhibited greater than 99.7% bacterial reduction on days 4 and 7. Significant differences (P ≤ .05) were observed in wounds treated with NVN4000 (1.8%) compared to silver sulfadiazine. CONCLUSIONS: These studies demonstrate that topical NO-releasing formulations effectively reduce the microbial burden of several microorganisms and exhibit superior antimicrobial efficacy compared to silver sulfadiazine in the porcine wound model.

2.
Mil Med ; 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38861411

RESUMO

INTRODUCTION: Debridement plays a critical role in wound management. In addition to removing necrotic tissue, debridement can eliminate bacteria frequently harbored within the tissue. This study evaluated a novel debridement method that uses plasma-based radiofrequency technology to remove tissue and bacteria. Coblation is a technology that uses radiofrequency energy to excite the electrolytes in a conductive medium, such as saline, to create a precisely focused plasma. This plasma field contains highly energized particles that possess sufficient energy to break tissue molecular bonds, causing the tissue to dissolve at relatively low temperatures (typically 40 °C to 70 °C). MATERIALS AND METHODS: Eighteen deep dermal wounds measuring 22 mm × 22 mm × 3 mm deep were created on pigs. Wounds were inoculated with methicillin-resistant Staphylococcus aureus USA300 (MRSA USA300) in combination with shrapnel and then covered with a polyurethane dressing for 24 hours. Wounds were then randomly assigned to one of the 3 treatment groups: (1) Coblation, (2) surgical debridement, and (3) no debridement. Wounds were biopsied on days 0, 5, 9, and 12, and specimens were processed for MRSA counts using selective media. Statistical analysis was performed using IBM SPSS statistics 27 using one-way ANOVA. RESULTS: Comparison between coblation and surgical debridement showed a decrease in bacterial count in all assessment times. The lowest bacterial count in all assessment times was observed in wounds debrided with coblation showing a statistically significant (P ≤ .05) decrease in more than 2 Log CFU/g on days 0, 5, and 9 compared to no debridement. On day 12, coblation-debrided wounds exhibited 6.10 ± 0.22 Log CFU/g, and this value represents 99.99% of reduction compared with non-debrided wounds (P ≤ .05). More than 96% of reduction (P ≤ .05) resulted in wounds treated with coblation compared with surgically debrided. CONCLUSIONS: Reducing MRSA bacterial infection counts, especially of biofilm-associated organisms, in combination with shrapnel may have important clinical implications, especially for the military personnel. Further research into the use of this technology in wound management is warranted.

3.
JAC Antimicrob Resist ; 6(3): dlae075, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38741896

RESUMO

Background: Microorganisms tend to rely on close relationships with other species to survive. Consequently, biofilms formed by interactions of different species have been shown to delay the wound healing process. Studies suggest these mixed-population infections contribute to the development of drug resistance and inhibition of host immune response. Silver sulfadiazine (SSD) has been shown to effectively decrease the risk of infection in an open wound. Typically, these are bacterial wound infections; however, the role of fungal species needs further attention. Objectives: The purpose of this in vitro study was to determine the effect of SSD on interactions between Pseudomonas aeruginosa 09-009 (PA1) or P. aeruginosa 09-010 (PA2) and Candida albicans ATTC 64550 (CA). Methods: A mixture of 4 mL of tryptic soy broth (TSB) and 100 µL of CA and/or PA1 or PA2 (∼106 log cfu/mL) inoculums were deposited into either wells or vials. The wells or vials were then sonicated (50 W for 10 s) to separate microorganisms attached to the walls. After incubation, cell counts were performed at 24 and 48 h for each microorganism using specific media. Results: Our results show that without SSD treatment, P. aeruginosa exhibits an inhibitory effect on C. albicans. Treatment with SSD demonstrated significant reduction of P. aeruginosa; however, C. albicans persisted. This experiment demonstrates that SSD was effective in reducing the bioburden of both P. aeruginosa strains after 24 and 48 h; however, it was not as effective in reducing C. albicans. Conclusions: The data suggest that for polymicrobial mixed infections containing Pseudomonas spp. and C. albicans, treatment with SSD may be beneficial but does not provide adequate microorganism eradication. As such, added treatments that provide coverage for Candida infection are necessary. Additional in vivo studies are needed to obtain a better understanding of the complex interactions between these organisms.

4.
Int Wound J ; 20(6): 2095-2104, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36625224

RESUMO

A new recombinant proteolytic enzyme, isolated from maggot saliva, with fibrinolytic action has been investigated through a series of non-clinical toxicology and in-vitro/in-vivo pharmacology studies to explore its potential safety and efficacy as an enzymatic debridement agent for use in chronic wounds. Studies indicate that the enzyme has a good safety profile. When locally administered, it is not detrimental to wound healing, is non-sensitising and is rapidly inactivated in the systemic circulation. Adverse effects are limited, at very high concentrations, to transient erythema at the site of application. In-vitro testing indicates that the enzyme, whilst selective for fibrin, has additional proteolytic action against collagen and elastin, with enzymatic action for all three substrates being dose dependent. In-vivo, we used an established MRSA biofilm model, in which microbiological counts were used as a surrogate for debridement efficacy. Here, we showed that higher concentrations of the enzyme in a formulated proprietary gel, significantly reduced MRSA counts over a period of 2 to 14 days, and significantly improved the vascularity of the wound at 14 days. Together, these data support the potential for this maggot-derived proteolytic enzyme as a clinically effective debriding agent.


Assuntos
Peptídeo Hidrolases , Cicatrização , Animais , Humanos , Desbridamento , Larva
5.
J Burn Care Res ; 44(2): 302-310, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36048023

RESUMO

Third-degree burns typically result in pronounced scarring and contraction in superficial and deep tissues. Established techniques such as debridement and grafting provide benefit in the acute phase of burn therapy, nevertheless, scar and contraction remain a challenge in deep burns management. Our ambition is to evaluate the effectiveness of novel cell-based therapies, which can be implemented into the standard of care debridement and grafting procedures. Twenty-seven third-degree burn wounds were created on the dorsal area of Red Duroc pig. After 72 h, burns are surgically debrided using a Weck knife. Split-thickness skin grafts (STSGs) were then taken after debridement and placed on burn scars combined with bone marrow stem cells (BM-MSCs). Biopsy samples were taken on days 17, 21, and 45 posttreatment for evaluation. Histological analysis revealed that untreated control scars at 17 days are more raised than burns treated with STSGs alone and/or STSGs with BM-MSCs. Wounds treated with skin grafts plus BM-MSCs appeared thinner and longer, indicative of reduced contraction. qPCR revealed some elevation of α-SMA expression at day 21 and Collagen Iα2 in cells derived from wounds treated with skin grafts alone compared to wounds treated with STSGs + BM-MSCs. We observed a reduction level of TGFß-1 expression at days 17, 21, and 45 in cells derived from wounds treated compared to controls. These results, where the combined use of stem cells and skin grafts stimulate healing and reduce contraction following third-degree burn injury, have a potential as a novel therapy in the clinic.


Assuntos
Queimaduras , Lesões dos Tecidos Moles , Animais , Suínos , Transplante de Pele/métodos , Cicatriz/patologia , Medula Óssea/metabolismo , Medula Óssea/patologia , Queimaduras/cirurgia , Queimaduras/patologia , Células-Tronco , Lesões dos Tecidos Moles/patologia , Pele/patologia
6.
J Wound Care ; 31(Sup2): S42-S48, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35148641

RESUMO

OBJECTIVE: The purpose of this study was to use an in vivo biofilm porcine model to examine a new polyvinyl alcohol-based gelling fibre dressing with silver and compare it to other commercial dressings containing: polyvinyl alcohol-based gelling fibre without silver; carboxymethyl cellulose-based fibre with silver, benzethonium chloride and ethylenediaminetetraacetic acid; and untreated control. METHODS: A total of 52 deep partial-thickness wounds (10x7x0.5mm) were created on each of three animals and inoculated with 25µl of meticillin-resistant Staphylococcus aureus (MRSA) (106 colony forming units (CFU)/ml). Wounds were covered for 24 hours to allow biofilm formation and were randomly designated to one of the four treatments. Samples were recovered for microbiological and histological analysis on days 3, 5 and 7 post-treatment. RESULTS: Polyvinyl alcohol-based gelling fibre dressing with silver was able to significantly reduce biofilm more effectively than the other treatment groups. By day 7, wounds treated with the dressing had a 2.72±0.01 log CFU/g reduction in MRSA count versus untreated control wounds and a 2.59±0.01 log CFU/g reduction versus baseline counts. For histology analysis, all wounds reached 100% re-epithelialisation by day 5. CONCLUSION: The results of this study indicated that polyvinyl alcohol-based gelling fibre dressing with silver was effective against biofilm of antibiotic-resistant staphylococcal strains without inhibiting the wound healing process, and may have important clinical implications when treating acute and/or hard-to-heal wounds.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecção dos Ferimentos , Animais , Bandagens , Biofilmes , Meticilina , Prata/farmacologia , Prata/uso terapêutico , Suínos , Infecção dos Ferimentos/tratamento farmacológico
7.
BMC Microbiol ; 22(1): 45, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-35120444

RESUMO

Candida albicans is a common cause of opportunistic mycoses worldwide and a major contributor in wound infections. The purpose of this study was to establish a fungal wound model and analyze the effects of a common antifungal agent against the proliferation of three C. albicans strains. Second degree burns were created, and then inoculated with one of three different C. albicans ATCC strains: 10261 reference strain, 64550 fluconazole resistant and 26310 fluconazole sensitive. After fungal inoculation, every wound was covered with dressings for 4 h to allow fungal colonization on every wound bed. After 4 h, the dressings were removed, and each wound was treated either once or twice daily with a topical terbinafine hydrochloride or left untreated. On days 2, 4 and 7 post inoculation, three wounds from each treatment group were scrub cultured and quantified. On day 2, wounds infected with the sensitive strains 26310 and 10261 and treated twice showed a significant reduction when compared against those infected wounds receiving once daily treatment. On day 4, wounds which were infected with C. albicans fluconazole sensitive (ATCC 26310) showed a significant reduction in fungal cell counts with treatment applied twice daily. A significant reduction in the colony counts was exhibited in all three strains at the seventh day with active as compared to the non-treated wounds. Twice daily treatment resulted in a lower fungal count than once daily treatment. Neither treatment was able to entirely eradicate C. albicans during the duration of this study. Establishing a reliable fungal wound model will help in the translational goal of identifying new antifungal that could be used clinically by wound care providers.


Assuntos
Candida albicans/patogenicidade , Candidíase/microbiologia , Modelos Animais de Doenças , Suínos , Animais , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Bandagens , Candida albicans/efeitos dos fármacos , Candidíase/tratamento farmacológico , Farmacorresistência Fúngica , Feminino , Testes de Sensibilidade Microbiana , Organismos Livres de Patógenos Específicos , Resultado do Tratamento
8.
Int Wound J ; 19(1): 86-99, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33955663

RESUMO

A variety of wound matrix materials that are designed to help heal both acute and chronic wounds are currently available. Because wounds often encounter opportunistic microbes that can delay healing, the effectiveness of these materials is often suboptimal, resulting in delayed or compromised wound healing. The importance of reducing and controlling wound microbes is well recognised and there are several antimicrobial options available to address this unmet clinical need. This study compares the antimicrobial and wound healing capabilities, both in vivo and in vitro against methicillin-resistant Staphylococcus aureus (MRSA) USA 300, for the following compounds: Collagen Wound Matrix-Anti Microbial (CWM-AM); Collagen Wound Matrix-Anti Microbial XT (CWM-AM XT); Antimicrobial Hydrofiber Wound Dressing (AHWD); Dermal Scaffold with Silver (DRSAg); Collagen Extracellular Matrix (CEM); Collagen Wound Matrix (CWM); Matrix Wound Dressing with Silver (MWDAg); Cadexomer Iodine Gel (CIG); Triple Antibiotic Ointment (TAO); and Antimicrobial Wound Gel (AWG). For the in vitro zone of inhibition assay, AWG and CIG had the largest diffused areas, followed by CWM-AM and CWM-AM XT. Furthermore, CWM-AM, CWM-AM XT, AWG, and CIG exhibited a persistent antimicrobial activity for up to 10 days after incubation. However, in the cytotoxicity studies performed using human fibroblasts, CWM-AM and CWM-AM XT had no detrimental effects in cell proliferation and viability, while AWG and CIG were cytotoxic and prohibitive for cell proliferation. Treatments were then assessed for microbiology and wound healing efficacy using an in vivo porcine deep reticular dermal wound model. CWM-AM XT displayed the greatest in vivo antimicrobial activity against MRSA USA300 and expedited the reepithelialisation at a faster rate than other treatment groups. This study shows that a novel collagen matrix containing an antimicrobial agent can reduce the bacterial load and support healing.


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Animais , Antibacterianos/uso terapêutico , Anti-Infecciosos/uso terapêutico , Biguanidas , Matriz Extracelular , Humanos , Suínos
9.
Front Microbiol ; 12: 708904, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34367114

RESUMO

Both acute and chronic cutaneous wounds are often difficult to treat due to the high-risk for bacterial contamination. Once hospitalized, open wounds are at a high-risk for developing hospital-associated infections caused by multi drug-resistant bacteria such as Staphylococcus aureus and Pseudomonas aeruginosa. Treating these infections is challenging, not only because of antibiotic resistance, but also due to the production of biofilms. New treatment strategies are needed that will help in both stimulating the wound healing process, as well as preventing and eliminating bacterial wound infections. Fusaricidins are naturally occurring cyclic lipopeptides with antimicrobial properties that have shown to be effective against a variety of fungi and Gram-positive bacteria, with low toxicity. Continuing with our efforts toward the identification of novel cyclic lipopeptides Fusaricidin analogs, herein we report the synthesis and evaluation of the antimicrobial activity for two novel cyclic lipopeptides (CLP), CLP 2605-4 and CLP 2612-8.1 against methicillin resistant S. aureus and P. aeruginosa, respectively, in in vivo porcine full thickness wound model. Both CLPs were able to reduce bacterial counts by approximately 3 log CFU/g by the last assessment day. Peptide 2612-8.1 slightly enhanced the wound healing, however, wounds treated with peptide 2605-4, have shown higher levels of inflammation and impaired wound healing process. This study highlights the importance of identifying new antimicrobials that can combat bacterial infection while not impeding tissue repair.

10.
Wound Manag Prev ; 67(8): 24-31, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34370678

RESUMO

BACKGROUND: Wound cleansing is an important component of wound management. PURPOSE: This study was conducted to examine the effect of a wound management solution (WMS) containing hypochlorous acid (HOCl) on methicillin-resistant Staphylococcus aureus (MRSA) and healing when used in conjunction with debridement. METHODS: Nineteen (19) deep reticular dermal wounds (22 mm × 22 mm × 3 mm deep) were created on the paravertebral and thoracic areas of 3 female pigs using a specialized electrokeratome. Wounds were separated by at least 5 cm to 7 cm of unwounded skin and inoculated with MRSA. After 72 hours, all wounds were debrided with a curette and irrigated with either the WMS or sterile saline solution twice per day from day 0 to day 4. Wounds then were irrigated once a day until the completion of the study (day 11). Wound tissue specimens were taken using punch biopsy for microbiological and histological analysis on days 4, 8, and 11 post treatment. Percent of wound epithelialized, epithelial thickness (cell layers µm), white cell infiltrate (1 = absent, 2 = mild, 3 = moderate, 4 = marked, 5 = exuberant), and percent of granulation tissue formation were calculated and assessed. Microbiology and histology results were analyzed for significant differences between treatments and among assessment days using one-way analysis of variance and student t-tests. A P value ≤ .05 was considered significant. RESULTS: The WMS effected a bacterial reduction (P ≤ .05) of more than 2.74 ± 0.43 and 1.03 ± 0.22 Log CFU/g in all assessment days compared with baseline before and after debridement, respectively. Percent epithelialization was significantly different between treatments on day 8, only 78.3% and 67.8% for HOCl and saline, respectively (P ≤ .05). No significant differences between treatments were observed for epithelial thickness or granulation tissue formation. CONCLUSION: The combination of debridement and HOCl wound irrigation can significantly reduce MRSA contamination and facilitate the healing process compared to saline irrigation. Clinical studies are needed to confirm these results.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Animais , Desbridamento , Feminino , Tecido de Granulação , Ácido Hipocloroso , Suínos , Cicatrização
12.
Wound Repair Regen ; 27(4): 360-365, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30920083

RESUMO

The wound environment is a fertile ground for biofilm forming pathogens. Once biofilms form within the wound, they can be very challenging to eradicate. The purpose of this study was to examine the effect of a gelling fiber dressing with silver using a well-established porcine wound biofilm model. Deep partial thickness wounds were inoculated with Pseudomonas aeruginosa ATCC 27312 and covered with a polyurethane film dressing to promote biofilm formation. Wounds were then divided into treatment groups: gelling fiber dressing with silver, gelling fiber dressing without silver, hydrofiber dressing with silver, benzethonium chloride and ethylenediaminetetraacetic acid and compared to untreated control. Microbiological, biofilm, and histological wound assessments were performed on days 3, 5, and 7 postinfection. Treatment with gelling fiber dressing with silver resulted in significant reduction of P. aeruginosa biofilm when compared to all other treatment groups on every assessment time point. In addition, gelling fiber dressing with silver treatment resulted in detachment of biofilm from the wound, while wounds treated with gelling fiber dressing with and without silver showed more granulation tissue formation on day 3. Our data show that a new gelling fiber dressing with silver was effective in reducing biofilm associated P. aeruginosa in vivo. This study may have important clinical implications especially for wounds heavily colonized with gram-negative biofilm-forming bacteria.


Assuntos
Antibacterianos/farmacologia , Curativos Hidrocoloides , Infecções por Pseudomonas/tratamento farmacológico , Prata/farmacologia , Cicatrização/efeitos dos fármacos , Infecção dos Ferimentos/microbiologia , Animais , Fenômenos Fisiológicos Bacterianos , Biofilmes/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Géis , Suínos , Cicatrização/fisiologia , Infecção dos Ferimentos/tratamento farmacológico
13.
Int Wound J ; 15(5): 834-839, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29893025

RESUMO

Topical antimicrobials are widely used to control wound bioburden and facilitate wound healing; however, the fine balance between antimicrobial efficacy and non-toxicity must be achieved. This study evaluated whether an anti-biofilm silver-containing wound dressing interfered with the normal healing process in non-contaminated deep partial thickness wounds. In an in-vivo porcine wound model using 2 pigs, 96 wounds were randomly assigned to 1 of 3 dressing groups: anti-biofilm silver Hydrofiber dressing (test), silver Hydrofiber dressing (control), or polyurethane film dressing (control). Wounds were investigated for 8 days, and wound biopsies (n = 4) were taken from each dressing group, per animal, on days 2, 4, 6, and 8 after wounding and evaluated using light microscopy. No statistically significant differences were observed in the rate of reepithelialisation, white blood cell infiltration, angiogenesis, or granulation tissue formation following application of the anti-biofilm silver Hydrofiber dressing versus the 2 control dressings. Overall, epithelial thickness was similar between groups. Some differences in infiltration of specific cell types were observed between groups. There were no signs of tissue necrosis, fibrosis, or fatty infiltration in any group. An anti-biofilm silver Hydrofiber wound dressing did not cause any notable interference with normal healing processes.


Assuntos
Anti-Infecciosos Locais/uso terapêutico , Curativos Hidrocoloides , Biofilmes/efeitos dos fármacos , Prata/uso terapêutico , Cicatrização/efeitos dos fármacos , Infecção dos Ferimentos/tratamento farmacológico , Ferimentos e Lesões/terapia , Animais , Humanos , Suínos
14.
J Invest Dermatol ; 138(5): 1187-1196, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29273315

RESUMO

Diabetic foot ulcers (DFUs) are a debilitating complication of diabetes in which bacterial presence, including the frequent colonizer Staphylococcus aureus, contributes to inhibition of healing. MicroRNAs (miRs) play a role in healing and host response to bacterial pathogens. However, the mechanisms by which miR response to cutaneous S. aureus contributes to DFU pathophysiology are unknown. Here, we show that S. aureus inhibits wound closure and induces miR-15b-5p in acute human and porcine wound models and in chronic DFUs. Transcriptome analyses of DFU tissue showed induction of miR-15b-5p to be critical, regulating many cellular processes, including DNA repair and inflammatory response, by suppressing downstream targets IKBKB, WEE1, FGF2, RAD50, MSH2, and KIT. Using a human wound model, we confirmed that S. aureus-triggered miR-15b-5p induction results in suppression of the inflammatory- and DNA repair-related genes IKBKB and WEE1. Inhibition of DNA repair and accumulation of DNA breaks was functionally confirmed by the presence of the pH2AX within colonized DFUs. We conclude that S. aureus induces miR-15b-5p, subsequently repressing DNA repair and inflammatory response, showing a mechanism of inhibition of healing in DFUs previously unreported, to our knowledge. This underscores a previously unknown role of DNA damage repair in the pathophysiology of DFUs colonized with S. aureus.


Assuntos
Reparo do DNA , Pé Diabético/microbiologia , Inflamação/etiologia , MicroRNAs/fisiologia , Staphylococcus aureus/patogenicidade , Animais , Proteínas de Ciclo Celular/genética , Células Cultivadas , Humanos , Quinase I-kappa B/genética , Proteínas Nucleares/genética , Proteínas Tirosina Quinases/genética , Suínos , Transcriptoma
15.
J Biol Chem ; 293(4): 1439-1449, 2018 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-29158265

RESUMO

Diabetic foot ulcers (DFUs), a life-threatening complication of diabetes mellitus, have limited treatment options, often resulting in amputations. HMG-CoA reductase inhibitors such as statins are cholesterol-reducing agents that may provide a new therapeutic option. Statins target the cholesterol pathway and block the synthesis of the wound-healing inhibitors farnesyl pyrophosphate (FPP) and cortisol, ligands for the glucocorticoid receptor (GR). Here we demonstrate that the naturally occurring statin mevastatin reverses FPP's effects and promotes healing by using in vitro wound healing assays, human ex vivo and porcine in vivo wound models, and DFU tissue. Moreover, we measured cortisol levels by ELISA and found that mevastatin inhibited cortisol synthesis in keratinocytes and biopsies from patients with DFU. Of note, topical mevastatin stimulated epithelialization and angiogenesis in vivo Mevastatin also reversed FPP-mediated induction of the GR target, the transcription factor c-Myc (a biomarker of non-healing wounds), in porcine and human wound models. Importantly, mevastatin reversed c-Myc overexpression in DFUs. It induced expression of the long noncoding RNA Gas5 that blocks c-Myc expression, which was confirmed by overexpression studies. We conclude that topical mevastatin accelerates wound closure by promoting epithelialization via multiple mechanisms: modulation of GR ligands and induction of the long noncoding RNA Gas5, leading to c-Myc inhibition. In light of these findings, we propose that repurposing statin drugs for topical treatment of DFUs may offer another option for managing this serious condition.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Queratinócitos/metabolismo , Lovastatina/análogos & derivados , Proteínas Proto-Oncogênicas c-myc/biossíntese , RNA Longo não Codificante/metabolismo , Receptores de Glucocorticoides/metabolismo , Cicatrização/efeitos dos fármacos , Administração Tópica , Pé Diabético/tratamento farmacológico , Pé Diabético/genética , Pé Diabético/metabolismo , Pé Diabético/patologia , Humanos , Queratinócitos/patologia , Lovastatina/farmacologia , Proteínas Proto-Oncogênicas c-myc/genética , RNA Longo não Codificante/genética
16.
Int Wound J ; 14(6): 1248-1257, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28771993

RESUMO

Combat injuries are associated with a high incidence of infection, and there is a continuing need for improved approaches to control infection and promote wound healing. Due to the possible local and systemic adverse effects of standard 1% cream formulation (Silvadene), we had previously developed a polyethylene glycol (PEGylated) fibrin hydrogel (FPEG)-based wound dressing for the controlled delivery of silver sulfadiazine (SSD) entrapped in chitosan microspheres (CSM). In this study, we have evaluated the antimicrobial and wound healing efficacy of SSD-CSM-FPEG using a full-thickness porcine wound infected with Pseudomonas aeruginosa. Infected wounds treated with a one-time application of the SSD-CSM-FPEG wound dressing demonstrated significantly reduced bacterial bioburden over time (99·99% of reduction by day 11; P < 0·05) compared with all the other treatment groups. The epithelial thickness and granulation of the wound bed was significantly better on day 7 (150·9 ± 13·12 µm), when compared with other treatment groups. Overall, our findings demonstrate that the SSD-CSM-FPEG wound dressing effectively controls P. aeruginosa infection and promotes wound healing by providing a favourable environment that induces neovascularisation. Collectively, sustained release of SSD using fibrin hydrogel exhibited enhanced benefits when compared with the currently available SSD treatment, and this may have significant implications in the bacterial reduction of infected wounds in military and civilian populations.


Assuntos
Anti-Infecciosos Locais/uso terapêutico , Curativos Hidrocoloides , Fibrina/uso terapêutico , Infecções por Pseudomonas/tratamento farmacológico , Sulfadiazina de Prata/uso terapêutico , Cicatrização/efeitos dos fármacos , Ferimentos e Lesões/tratamento farmacológico , Animais , Quitosana/uso terapêutico , Modelos Animais de Doenças , Microesferas , Suínos
17.
Int Wound J ; 14(6): 937-944, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28266133

RESUMO

Irrigation and removal of necrotic debris can be beneficial for proper healing. It is becoming increasingly evident that wounds colonized with biofilm forming bacteria, such as Staphylococcus aureus (SA), can be more difficult to eradicate. Here we report our findings of the effects of an irrigation solution containing propyl-betaine and polyhexanide (PHMB) on methicillin-resistant Staphylococcus aureus (MRSA) biofilms in a porcine wound model. Thirty-nine deep partial thickness wounds were created with six wounds assigned to one of six treatment groups: (i) PHMB, (ii) Ringer's solution, (iii) hypochlorous acid/sodium hypochlorite, (iv) sterile water, (v) octenidine dihydrochloride, and (vi) octenilin. Wounds were inoculated with MRSA and covered with a polyurethane dressing for 24 hours to allow biofilm formation. The dressings were then removed and the wounds were irrigated twice daily for 3 days with the appropriate solution. MRSA from four wounds were recovered from each treatment group at 3 days and 6 days hours after initial treatment. Irrigation of wounds with the PHMB solution resulted in 97·85% and 99·64% reductions of MRSA at the respective 3 days and 6 days assessment times when compared to the untreated group. Both of these reductions were statistically significant compared to all other treatment groups (P values <0·05).


Assuntos
Betaína/uso terapêutico , Biguanidas/uso terapêutico , Biofilmes/efeitos dos fármacos , Desinfetantes/uso terapêutico , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Infecções Estafilocócicas/tratamento farmacológico , Ferimentos e Lesões/tratamento farmacológico , Animais , Modelos Animais de Doenças , Suínos
18.
Wound Repair Regen ; 25(6): 912-922, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29315980

RESUMO

Probiotics are beneficial microorganisms, known to exert numerous positive effects on human health, primarily in the battle against pathogens. Probiotics have been associated with improved healing of intestinal ulcers, and healing of infected cutaneous wounds. This article reviews the latest findings on probiotics related to their pro-healing properties on gut epithelium and skin. Proven mechanisms by which probiotic bacteria exert their beneficial effects include direct killing of pathogens, competitive displacement of pathogenic bacteria, reinforcement of epithelial barrier, induction of fibroblasts, and epithelial cells' migration and function. Beneficial immunomodulatory effects of probiotics relate to modulation and activation of intraepithelial lymphocytes, natural killer cells, and macrophages through induced production of cytokines. Systemic effects of beneficial bacteria and link between gut microbiota, immune system, and cutaneous health through gut-brain-skin axes are discussed as well. In light of growing antibiotic resistance of pathogens, antibiotic use is becoming less effective in treating cutaneous and systemic infections. This review points to a new perspective and therapeutic potential of beneficial probiotic species as a safe alternative approach for treatment of patients affected by wound healing disorders and cutaneous infections.


Assuntos
Bactérias/imunologia , Ativação Linfocitária/imunologia , Probióticos/uso terapêutico , Regeneração/imunologia , Pele/lesões , Ferimentos e Lesões/tratamento farmacológico , Movimento Celular , Citocinas/imunologia , Epitélio , Fibroblastos , Microbioma Gastrointestinal/imunologia , Microbioma Gastrointestinal/fisiologia , Humanos , Células Matadoras Naturais/imunologia , Macrófagos/imunologia , Regeneração/fisiologia , Pele/imunologia , Pele/microbiologia , Cicatrização/imunologia , Cicatrização/fisiologia , Ferimentos e Lesões/imunologia
20.
Eur J Med Chem ; 108: 354-363, 2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26703794

RESUMO

Treating bacterial infections can be difficult due to innate or acquired resistance mechanisms, and the formation of biofilms. Cyclic lipopeptides derived from fusaricidin/LI-F natural products represent particularly attractive candidates for the development of new antibacterial and antibiofilm agents, with the potential to meet the challenge of bacterial resistance to antibiotics. A positional-scanning combinatorial approach was used to identify the amino acid residues responsible for driving antibacterial activity, and increase the potency of these cyclic lipopeptides. Screening against the antibiotic resistant ESKAPE pathogens revealed the importance of hydrophobic as well as positively charged amino acid residues for activity of this class of peptides. The improvement in potency was especially evident against bacterial biofilms, since the lead cyclic lipopeptide showed promising in vitro and in vivo anti-biofilm activity at the concentration far below its respective MICs. Importantly, structural changes resulting in a more hydrophobic and positively charged analog did not lead to an increase in toxicity toward human cells.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Técnicas de Química Combinatória , Lipopeptídeos/farmacologia , Biblioteca de Peptídeos , Peptídeos Cíclicos/farmacologia , Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Lipopeptídeos/síntese química , Lipopeptídeos/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Peptídeos Cíclicos/síntese química , Peptídeos Cíclicos/química , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA