Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Physiol Genomics ; 50(6): 468-477, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29625019

RESUMO

To identify molecular pathways that couple metabolic imbalances and reproduction, we randomly assigned 10 castrated male sheep to be centrally injected into the lateral ventricle through intracerebroventricular cannulas with 1 ml of ß-hydroxybutyric acid sodium salt solution (BHB; 12,800 µmol/l) or saline solution (CON; 0.9% NaCl). Approximately 2 h postinjection, sheep were humanely euthanized, and hypothalamus and pituitary tissues were harvested for transcriptome characterization by RNA sequencing. RNA was extracted from the hypothalamus and pituitary and sequenced at a high depth (hypothalamus: 468,912,732 reads; pituitary: 515,106,092 reads) with the Illumina Hi-Seq 2500 platform and aligned to Bos taurus and Ovis aries genomes. Of the total raw reads, 87% (hypothalamus) and 90.5% (pituitary) mapped to the reference O. aries genome. Within these read sets, ~56% in hypothalamus and 69% in pituitary mapped to either known or putative protein coding genes. Fragments per kilobase of transcripts per million normalized counts were averaged and ranked to identify the transcript expression level. Gene Ontology analysis (DAVID Bioinformatics Resources) was utilized to identify biological process functions related to genes shared between tissues, as well as functional categories with tissue-specific enrichment. Between CON- and BHB-treated sheep, 11 and 44 genes were differentially expressed (adj. P < 0.05) within the pituitary and hypothalamus, respectively. Functional enrichment analyses revealed BHB altered expression of genes in pathways related to stimulus perception, inflammation, and cell cycle control. The set of genes altered by BHB creates a foundation from which to identify the signaling pathways that impact reproduction during metabolic imbalances.


Assuntos
Ácido 3-Hidroxibutírico/administração & dosagem , Ácido 3-Hidroxibutírico/farmacologia , Castração , Perfilação da Expressão Gênica , Hipotálamo/metabolismo , Hipófise/metabolismo , Reprodução/efeitos dos fármacos , Ovinos/metabolismo , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Ontologia Genética , Hipotálamo/efeitos dos fármacos , Injeções Intraventriculares , Masculino , Metaboloma/efeitos dos fármacos , Metabolômica , Hipófise/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Análise de Sequência de RNA
2.
BMC Genomics ; 17: 702, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27589953

RESUMO

BACKGROUND: To develop a set of transcriptome sequences to support research on environmental stress responses in green ash (Fraxinus pennsylvanica), we undertook deep RNA sequencing of green ash tissues under various stress treatments. The treatments, including emerald ash borer (EAB) feeding, heat, drought, cold and ozone, were selected to mimic the increasing threats of climate change and invasive pests faced by green ash across its native habitat. RESULTS: We report the generation and assembly of RNA sequences from 55 green ash samples into 107,611 putative unique transcripts (PUTs). 52,899 open reading frames were identified. Functional annotation of the PUTs by comparison to the Uniprot protein database identified matches for 63 % of transcripts and for 98 % of transcripts with ORFs. Further functional annotation identified conserved protein domains and assigned gene ontology terms to the PUTs. Examination of transcript expression across different RNA libraries revealed that expression patterns clustered based on tissues regardless of stress treatment. The transcripts from stress treatments were further examined to identify differential expression. Tens to hundreds of differentially expressed PUTs were identified for each stress treatment. A set of 109 PUTs were found to be consistently up or down regulated across three or more different stress treatments, representing basal stress response candidate genes in green ash. In addition, 1956 simple sequence repeats were identified in the PUTs, of which we identified 465 high quality DNA markers and designed flanking PCR primers. CONCLUSIONS: North American native ash trees have suffered extensive mortality due to EAB infestation, creating a need to breed or select for resistant green ash genotypes. Stress from climate change is an additional concern for longevity of native ash populations. The use of genomics could accelerate management efforts. The green ash transcriptome we have developed provides important sequence information, genetic markers and stress-response candidate genes.


Assuntos
Fraxinus/genética , Genes de Plantas , Estresse Fisiológico/genética , Transcriptoma , Mudança Climática , Análise por Conglomerados , Biologia Computacional/métodos , Secas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Sequenciamento de Nucleotídeos em Larga Escala , Repetições de Microssatélites , Missouri , Anotação de Sequência Molecular , Especificidade de Órgãos/genética
3.
BMC Biotechnol ; 16(1): 47, 2016 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-27245738

RESUMO

BACKGROUND: The ATP-binding cassette (ABC) transporter gene superfamily is ubiquitous among extant organisms and prominently represented in plants. ABC transporters act to transport compounds across cellular membranes and are involved in a diverse range of biological processes. Thus, the applicability to biotechnology is vast, including cancer resistance in humans, drug resistance among vertebrates, and herbicide and other xenobiotic resistance in plants. In addition, plants appear to harbor the highest diversity of ABC transporter genes compared with any other group of organisms. This study applied transcriptome analysis to survey the kingdom-wide ABC transporter diversity in plants and suggest biotechnology applications of this diversity. RESULTS: We utilized sequence similarity-based informatics techniques to infer the identity of ABC transporter gene candidates from 1295 phylogenetically-diverse plant transcriptomes. A total of 97,149 putative (approximately 25 % were full-length) ABC transporter gene members were identified; each RNA-Seq library (plant sample) had 88 ± 30 gene members. As expected, simpler organisms, such as algae, had fewer unique members than vascular land plants. Differences were also noted in the richness of certain ABC transporter subfamilies. Land plants had more unique ABCB, ABCC, and ABCG transporter gene members on average (p < 0.005), and green algae, red algae, and bryophytes had significantly more ABCF transporter gene members (p < 0.005). Ferns had significantly fewer ABCA transporter gene members than all other plant groups (p < 0.005). CONCLUSIONS: We present a transcriptomic overview of ABC transporter gene members across all major plant groups. An increase in the number of gene family members present in the ABCB, ABCC, and ABCD transporter subfamilies may indicate an expansion of the ABC transporter superfamily among green land plants, which include all crop species. The striking difference between the number of ABCA subfamily transporter gene members between ferns and other plant taxa is surprising and merits further investigation. Discussed is the potential exploitation of ABC transporters in plant biotechnology, with an emphasis on crops.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Genes de Plantas/genética , Variação Genética/genética , Genoma de Planta/genética , Proteínas de Plantas/genética , Plantas/genética , Biotecnologia/tendências , Mapeamento Cromossômico/métodos , Mineração de Dados/métodos , Bases de Dados de Proteínas , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...