Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Neurobiol Aging ; 98: 42-51, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33232854

RESUMO

We characterize the whole-brain N-acetyl-aspartate (WBNAA) and brain tissue fractions across the adult lifespan and test the hypothesis that, despite age-related atrophy, neuronal integrity (reflected by WBNAA) is preserved in normal aging. Two-hundred-and-seven participants: 133 cognitively intact older adults (73.6 ± 7.4 mean ± standard deviation, range: 60-90 year old) and 84 young (37.9 ± 11, range: 21-59 year old) were scanned with proton magnetic resonance spectroscopy and T1-weighted MRI. Their WBNAA, fractional brain parenchyma, and gray and white matter volumes (fBPV, fGM, and fWM) were compared and modeled as functions of age and sex. Compared with young, older-adults' WBNAA was lower by ~35%, and fBPV, fGM and fWM were lower by ~10%. Linear regressions found 0.5%/year WBNAA and 0.2%/year fBPV and fGM declines, whereas fWM rose to age ~40 years, and declined thereafter. fBPV and fGM were 1.8% and 4% higher in women, with no sex decline rates difference. We conclude that contrary to our hypothesis, atrophy was accompanied by WBNAA decline. Across the entire age range, women's brains showed less atrophy than men's. Formulas to estimate WBNAA and brain tissue fractions in healthy adults are provided to help differentiate normal from abnormal aging.


Assuntos
Encéfalo/metabolismo , Encéfalo/patologia , Envelhecimento Saudável/metabolismo , Envelhecimento Saudável/patologia , Idoso , Idoso de 80 Anos ou mais , Ácido Aspártico/análogos & derivados , Atrofia , Feminino , Substância Cinzenta/metabolismo , Substância Cinzenta/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Tamanho do Órgão , Caracteres Sexuais
2.
J Magn Reson Imaging ; 50(5): 1424-1432, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30868703

RESUMO

BACKGROUND: 3D brain proton MR spectroscopic imaging (1 H MRSI) facilitates simultaneous metabolic profiling of multiple loci, at higher, sub-1 cm3 , spatial resolution than single-voxel 1 H MRS with the ability to separate tissue-type partial volume contribution(s). PURPOSE: To determine if: 1) white matter (WM) damage in mild traumatic brain injury (mTBI) is homogeneously diffuse, or if specific regions are more affected; 2) partial-volume-corrected, structure-specific 1 H MRSI voxel averaging is sensitive to regional WM metabolic abnormalities. STUDY TYPE: Retrospective cross-sectional cohort study. POPULATION: Twenty-seven subjects: 15 symptomatic mTBI patients, 12 matched controls. FIELD STRENGTH/SEQUENCE: 3T using 3D 1 H MRSI over a 360-cm3 volume of interest (VOI) centered over the corpus callosum, partitioned into 480 voxels, each 0.75 cm3 . ASSESSMENT: N-acetyl-aspartate (NAA), creatine, choline, and myo-inositol concentrations estimated in predominantly WM regions: body, genu, and splenium of the corpus callosum, corona radiata, frontal, and occipital WM. STATISTICAL TESTS: Analysis of covariance (ANCOVA) to compare patients with controls in terms of regional concentrations. The effect sizes (Cohen's d) of the mean differences were compared across regions and with previously published global data obtained with linear regression of the WM over the entire VOI in the same dataset. RESULTS: Despite patients' global VOI WM NAA being significantly lower than the controls', no regional differences were observed for any metabolite. Regional NAA comparisons, however, were all unidirectional (patients' NAA concentrations < controls') within a narrow range: 0.3 ≤ Cohen's d ≤ 0.6. DATA CONCLUSION: Since the patient group was symptomatic and exhibiting global WM NAA deficits, these findings suggest: 1) diffuse axonal mTBI damage; that is 2) below the 1 H MRSI detection threshold in small regions. Therefore, larger, ie, more sensitive, single-voxel 1 H MRS, placed anywhere in WM regions, may be well suited for mTBI 1 H MRS studies, given that these results are confirmed in other cohorts. LEVEL OF EVIDENCE: 2 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2019;50:1424-1432.


Assuntos
Lesões Encefálicas Traumáticas/diagnóstico por imagem , Espectroscopia de Prótons por Ressonância Magnética/métodos , Substância Branca/diagnóstico por imagem , Adolescente , Adulto , Estudos de Casos e Controles , Estudos Transversais , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Adulto Jovem
4.
Epilepsy Res ; 139: 85-91, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29212047

RESUMO

OBJECTIVE: To test the hypothesis that localization-related epilepsy is associated with widespread neuronal dysfunction beyond the ictal focus, reflected by a decrease in patients' global concentration of their proton MR spectroscopy (1H-MRS) observed marker, N-acetyl-aspartate (NAA). METHODS: Thirteen patients with localization-related epilepsy (7 men, 6 women) 40±13 (mean±standard-deviation)years old, 8.3±13.4years of disease duration; and 14 matched controls, were scanned at 3 T with MRI and whole-brain (WB) 1H MRS. Intracranial fractions of brain volume, gray and white matter (fBV, fGM, fWM) were segmented from the MRI, and global absolute NAA creatine (Cr) and choline (Cho) concentrations were estimated from their WB 1H MRS. These metrics were compared between patients and controls using an unequal variance t test. RESULTS: Patients' fBV, fGM and fWM: 0.81±0.07, 0.47±0.04, 0.31±0.04 were not different from controls' 0.79±0.05, 0.48±0.04, 0.32±0.02; nor were their Cr and Cho concentrations: 7.1±1.1 and 1.3±0.2 millimolar (mM) versus 7.7±0.7 and 1.4±0.1mM (p>0.05 all). Patients' global NAA concentration: 11.5±1.5 mM, however, was 12% lower than controls' 13.0±0.8mM (p=0.004). CONCLUSIONS: These findings indicate that neuronal dysfunction in localization-related epilepsy extends globally, beyond the ictal zone, but without atrophy or spectroscopic evidence of other pathology. This suggests a diffuse decline in the neurons' health, rather than their number, early in the disease course. WB 1H-MRS assessment, therefore, may be a useful tool for quantification of global neuronal dysfunction load in epilepsy.


Assuntos
Ácido Aspártico/análogos & derivados , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Epilepsias Parciais/diagnóstico por imagem , Epilepsias Parciais/metabolismo , Espectroscopia de Prótons por Ressonância Magnética , Adulto , Ácido Aspártico/metabolismo , Atrofia , Encéfalo/patologia , Estudos de Coortes , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Tamanho do Órgão , Adulto Jovem
5.
NMR Biomed ; 30(10)2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28678429

RESUMO

Total N-acetyl-aspartate + N-acetyl-aspartate-glutamate (NAA), total creatine (Cr) and total choline (Cho) proton MRS (1 H-MRS) signals are often used as surrogate markers in diffuse neurological pathologies, but spatial coverage of this methodology is limited to 1%-65% of the brain. Here we wish to demonstrate that non-localized, whole-head (WH) 1 H-MRS captures just the brain's contribution to the Cho and Cr signals, ignoring all other compartments. Towards this end, 27 young healthy adults (18 men, 9 women), 29.9 ± 8.5 years old, were recruited and underwent T1 -weighted MRI for tissue segmentation, non-localizing, approximately 3 min WH 1 H-MRS (TE /TR /TI  = 5/10/940 ms) and 30 min 1 H-MR spectroscopic imaging (MRSI) (TE /TR  = 35/2100 ms) in a 360 cm3 volume of interest (VOI) at the brain's center. The VOI absolute NAA, Cr and Cho concentrations, 7.7 ± 0.5, 5.5 ± 0.4 and 1.3 ± 0.2 mM, were all within 10% of the WH: 8.6 ± 1.1, 6.0 ± 1.0 and 1.3 ± 0.2 mM. The mean NAA/Cr and NAA/Cho ratios in the WH were only slightly higher than the "brain-only" VOI: 1.5 versus 1.4 (7%) and 6.6 versus 5.9 (11%); Cho/Cr were not different. The brain/WH volume ratio was 0.31 ± 0.03 (brain ≈ 30% of WH volume). Air-tissue susceptibility-driven local magnetic field changes going from the brain outwards showed sharp gradients of more than 100 Hz/cm (1 ppm/cm), explaining the skull's Cr and Cho signal losses through resonance shifts, line broadening and destructive interference. The similarity of non-localized WH and localized VOI NAA, Cr and Cho concentrations and their ratios suggests that their signals originate predominantly from the brain. Therefore, the fast, comprehensive WH-1 H-MRS method may facilitate quantification of these metabolites, which are common surrogate markers in neurological disorders.


Assuntos
Encéfalo/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Prótons , Adolescente , Adulto , Ácido Aspártico/análogos & derivados , Colina/metabolismo , Creatina/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
6.
Hum Brain Mapp ; 38(8): 4047-4063, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28523763

RESUMO

Although MRI assessment of white matter lesions is essential for the clinical management of multiple sclerosis, the processes leading to the formation of lesions and underlying their subsequent MRI appearance are incompletely understood. We used proton MR spectroscopy to study the evolution of N-acetyl-aspartate (NAA), creatine (Cr), choline (Cho), and myo-inositol (mI) in pre-lesional tissue, persistent and transient new lesions, as well as in chronic lesions, and related the results to quantitative MRI measures of T1-hypointensity and T2-volume. Within 10 patients with relapsing-remitting course, there were 180 regions-of-interest consisting of up to seven semi-annual follow-ups of normal-appearing white matter (NAWM, n = 10), pre-lesional tissue giving rise to acute lesions which resolved (n = 3) or persisted (n = 3), and of moderately (n = 9) and severely hypointense (n = 6) chronic lesions. Compared with NAWM, pre-lesional tissue had higher Cr and Cho, while compared with lesions, pre-lesional tissue had higher NAA. Resolving acute lesions showed similar NAA levels pre- and post-formation, suggesting no long-term axonal damage. In chronic lesions, there was an increase in mI, suggesting accumulating astrogliosis. Lesion volume was a better predictor of axonal health than T1-hypointensity, with lesions larger than 1.5 cm3 uniformly exhibiting very low (<4.5 millimolar) NAA concentrations. A positive correlation between longitudinal changes in Cho and in lesion volume in moderately hypointense lesions implied that lesion size is mediated by chronic inflammation. These and other results are integrated in a discussion on the steady-state metabolism of lesion evolution in multiple sclerosis, viewed in the context of conventional MRI measures. Hum Brain Mapp 38:4047-4063, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Imageamento por Ressonância Magnética , Esclerose Múltipla Recidivante-Remitente/diagnóstico por imagem , Esclerose Múltipla Recidivante-Remitente/metabolismo , Espectroscopia de Prótons por Ressonância Magnética , Adulto , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Colina/metabolismo , Creatina/metabolismo , Estudos Transversais , Progressão da Doença , Feminino , Seguimentos , Humanos , Inositol/metabolismo , Estudos Longitudinais , Masculino , Tamanho do Órgão , Substância Branca/diagnóstico por imagem , Substância Branca/metabolismo , Adulto Jovem
7.
Magn Reson Imaging ; 35: 15-19, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27580518

RESUMO

BACKGROUND AND PURPOSE: To assess the sensitivity of non-localized, whole-head 1H-MRS to an individual's serial changes in total-brain NAA, Glx, Cr and Cho concentrations - metabolite metrics often used as surrogate markers in neurological pathologies. MATERIALS AND METHODS: In this prospective study, four back-to-back (single imaging session) and three serial (successive sessions) non-localizing, ~3min 1H-MRS (TE/TR/TI=5/104/940ms) scans were performed on 18 healthy young volunteers: 9 women, 9 men: 29.9±7.6 [mean±standard deviation (SD)] years old. These were analyzed by calculating a within-subject coefficient of variation (CV=SD/mean) to assess intra- and inter-scan repeatability and prediction intervals. This study was Health Insurance Portability and Accountability Act compliant. All subjects gave institutional review board-approved written, informed consent. RESULTS: The intra-scan CVs for the NAA, Glx, Cr and Cho were: 3.9±1.8%, 7.3±4.6%, 4.0±3.4% and 2.5±1.6%, and the corresponding inter-scan (longitudinal) values were: 7.0±3.1%, 10.6±5.6%, 7.6±3.5% and 7.0±3.9%. This method is shown to have 80% power to detect changes of 14%, 27%, 26% and 19% between two serial measurements in a given individual. CONCLUSIONS: Subject to the assumption that in neurological disorders NAA, Glx, Cr and Cho changes represent brain-only pathology and not muscles, bone marrow, adipose tissue or epithelial cells, this approach enables us to quantify them, thereby adding specificity to the assessment of the total disease load. This will facilitate monitoring diffuse pathologies with faster measurement, more extensive (~90% of the brain) spatial coverage and sensitivity than localized 1H-MRS.


Assuntos
Encéfalo/metabolismo , Espectroscopia de Prótons por Ressonância Magnética/métodos , Adolescente , Adulto , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Encéfalo/diagnóstico por imagem , Colina/metabolismo , Creatina/metabolismo , Feminino , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Humanos , Masculino , Estudos Prospectivos , Valores de Referência , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Adulto Jovem
8.
Neuroimage ; 118: 334-43, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26037050

RESUMO

Diffusion MRI combined with biophysical modeling allows for the description of a white matter (WM) fiber bundle in terms of compartment specific white matter tract integrity (WMTI) metrics, which include intra-axonal diffusivity (Daxon), extra-axonal axial diffusivity (De||), extra-axonal radial diffusivity (De┴), axonal water fraction (AWF), and tortuosity (α) of extra-axonal space. Here we derive these parameters from diffusion kurtosis imaging to examine their relationship to concentrations of global WM N-acetyl-aspartate (NAA), creatine (Cr), choline (Cho) and myo-Inositol (mI), as measured with proton MR spectroscopy ((1)H-MRS), in a cohort of 25 patients with mild traumatic brain injury (MTBI). We found statistically significant (p<0.05) positive correlations between NAA and Daxon, AWF, α, and fractional anisotropy; negative correlations between NAA and De,┴ and the overall radial diffusivity (D┴). These correlations were supported by similar findings in regional analysis of the genu and splenium of the corpus callosum. Furthermore, a positive correlation in global WM was noted between Daxon and Cr, as well as a positive correlation between De|| and Cho, and a positive trend between De|| and mI. The specific correlations between NAA, an endogenous probe of the neuronal intracellular space, and WMTI metrics related to the intra-axonal space, combined with the specific correlations of De|| with mI and Cho, both predominantly present extra-axonally, corroborate the overarching assumption of many advanced modeling approaches that diffusion imaging can disentangle between the intra- and extra-axonal compartments in WM fiber bundles. Our findings are also generally consistent with what is known about the pathophysiology of MTBI, which appears to involve both intra-axonal injury (as reflected by a positive trend between NAA and Daxon) as well as axonal shrinkage, demyelination, degeneration, and/or loss (as reflected by correlations between NAA and De┴, AWF, and α).


Assuntos
Ácido Aspártico/análogos & derivados , Axônios/metabolismo , Lesões Encefálicas/metabolismo , Encéfalo/metabolismo , Adulto , Ácido Aspártico/metabolismo , Axônios/patologia , Encéfalo/patologia , Lesões Encefálicas/patologia , Colina/metabolismo , Creatina/metabolismo , Imagem de Difusão por Ressonância Magnética , Feminino , Humanos , Inositol/metabolismo , Masculino , Modelos Neurológicos , Espectroscopia de Prótons por Ressonância Magnética , Substância Branca/metabolismo , Substância Branca/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...