Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cereb Cortex ; 34(5)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38760318

RESUMO

Cortical parvalbumin interneurons (PV+) are major regulators of excitatory/inhibitory information processing, and their maturation is associated with the opening of developmental critical periods (CP). Recent studies reveal that cortical PV+ axons are myelinated, and that myelination along with perineuronal net (PNN) maturation around PV+ cells is associated with the closures of CP. Although PV+ interneurons are susceptible to early-life stress, their relationship between their myelination and PNN coverage remains unexplored. This study compared the fine features of PV+ interneurons in well-characterized human post-mortem ventromedial prefrontal cortex samples (n = 31) from depressed suicides with or without a history of child abuse (CA) and matched controls. In healthy controls, 81% of all sampled PV+ interneurons displayed a myelinated axon, while a subset (66%) of these cells also displayed a PNN, proposing a relationship between both attributes. Intriguingly, a 3-fold increase in the proportion of unmyelinated PV+ interneurons with a PNN was observed in CA victims, along with greater PV-immunofluorescence intensity in myelinated PV+ cells with a PNN. This study, which is the first to provide normative data on myelination and PNNs around PV+ interneurons in human neocortex, sheds further light on the cellular and molecular consequences of early-life adversity on cortical PV+ interneurons.


Assuntos
Interneurônios , Parvalbuminas , Córtex Pré-Frontal , Humanos , Córtex Pré-Frontal/patologia , Córtex Pré-Frontal/metabolismo , Parvalbuminas/metabolismo , Interneurônios/patologia , Interneurônios/metabolismo , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Bainha de Mielina/patologia , Bainha de Mielina/metabolismo , Suicídio , Idoso , Autopsia , Maus-Tratos Infantis/psicologia , Adulto Jovem
2.
Brain Behav Immun Health ; 34: 100684, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37822873

RESUMO

The neurovascular unit, comprised of vascular cell types that collectively regulate cerebral blood flow to meet the needs of coupled neurons, is paramount for the proper function of the central nervous system. The neurovascular unit gatekeeps blood-brain barrier properties, which experiences impairment in several central nervous system diseases associated with neuroinflammation and contributes to pathogenesis. To better understand function and dysfunction at the neurovascular unit and how it may confer inflammatory processes within the brain, isolation and characterization of the neurovascular unit is needed. Here, we describe a singular, standardized protocol to enrich and isolate microvessels from archived snap-frozen human and frozen mouse cerebral cortex using mechanical homogenization and centrifugation-separation that preserves the structural integrity and multicellular composition of microvessel fragments. For the first time, microvessels are isolated from postmortem ventromedial prefrontal cortex tissue and are comprehensively investigated as a structural unit using both RNA sequencing and Liquid Chromatography with tandem mass spectrometry (LC-MS/MS). Both the transcriptome and proteome are obtained and compared, demonstrating that the isolated brain microvessel is a robust model for the NVU and can be used to generate highly informative datasets in both physiological and disease contexts.

3.
Nat Commun ; 14(1): 2912, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217515

RESUMO

Major depressive disorder (MDD) is a common, heterogenous, and potentially serious psychiatric illness. Diverse brain cell types have been implicated in MDD etiology. Significant sexual differences exist in MDD clinical presentation and outcome, and recent evidence suggests different molecular bases for male and female MDD. We evaluated over 160,000 nuclei from 71 female and male donors, leveraging new and pre-existing single-nucleus RNA-sequencing data from the dorsolateral prefrontal cortex. Cell type specific transcriptome-wide threshold-free MDD-associated gene expression patterns were similar between the sexes, but significant differentially expressed genes (DEGs) diverged. Among 7 broad cell types and 41 clusters evaluated, microglia and parvalbumin interneurons contributed the most DEGs in females, while deep layer excitatory neurons, astrocytes, and oligodendrocyte precursors were the major contributors in males. Further, the Mic1 cluster with 38% of female DEGs and the ExN10_L46 cluster with 53% of male DEGs, stood out in the meta-analysis of both sexes.


Assuntos
Transtorno Depressivo Maior , Transcriptoma , Masculino , Feminino , Humanos , Transcriptoma/genética , Transtorno Depressivo Maior/genética , Transtorno Depressivo Maior/metabolismo , Córtex Pré-Frontal/metabolismo , Depressão/genética , Encéfalo/metabolismo
4.
Mol Psychiatry ; 27(3): 1552-1561, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34799691

RESUMO

Child abuse (CA) is a strong predictor of psychopathologies and suicide, altering normal trajectories of brain development in areas closely linked to emotional responses such as the prefrontal cortex (PFC). Yet, the cellular underpinnings of these enduring effects are unclear. Childhood and adolescence are marked by the protracted formation of perineuronal nets (PNNs), which orchestrate the closure of developmental windows of cortical plasticity by regulating the functional integration of parvalbumin interneurons into neuronal circuits. Using well-characterized post-mortem brain samples, we show that a history of CA is specifically associated with increased densities and morphological complexity of WFL-labeled PNNs in the ventromedial PFC (BA11/12), possibly suggesting increased recruitment and maturation of PNNs. Through single-nucleus sequencing and fluorescent in situ hybridization, we found that the expression of canonical components of PNNs is enriched in oligodendrocyte progenitor cells (OPCs), and that they are upregulated in CA victims. These correlational findings suggest that early-life adversity may lead to persistent patterns of maladaptive behaviors by reducing the neuroplasticity of cortical circuits through the enhancement of developmental OPC-mediated PNN formation.


Assuntos
Maus-Tratos Infantis , Células Precursoras de Oligodendrócitos , Criança , Matriz Extracelular/metabolismo , Humanos , Hibridização in Situ Fluorescente , Interneurônios/metabolismo , Células Precursoras de Oligodendrócitos/metabolismo , Parvalbuminas/metabolismo , Córtex Pré-Frontal/metabolismo
5.
Front Psychiatry ; 12: 640963, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33613346

RESUMO

Post-mortem investigations have implicated cerebral astrocytes immunoreactive (-IR) for glial fibrillary acidic protein (GFAP) in the etiopathology of depression and suicide. However, it remains unclear whether astrocytic subpopulations IR for other astrocytic markers are similarly affected. Astrocytes IR to vimentin (VIM) display different regional densities than GFAP-IR astrocytes in the healthy brain, and so may be differently altered in depression and suicide. To investigate this, we compared the densities of GFAP-IR astrocytes and VIM-IR astrocytes in post-mortem brain samples from depressed suicides and matched non-psychiatric controls in three brain regions (dorsomedial prefrontal cortex, dorsal caudate nucleus and mediodorsal thalamus). A quantitative comparison of the fine morphology of VIM-IR astrocytes was also performed in the same regions and subjects. Finally, given the close association between astrocytes and blood vessels, we also assessed densities of CD31-IR blood vessels. Like for GFAP-IR astrocytes, VIM-IR astrocyte densities were found to be globally reduced in depressed suicides relative to controls. By contrast, CD31-IR blood vessel density and VIM-IR astrocyte morphometric features in these regions were similar between groups, except in prefrontal white matter, in which vascularization was increased and astrocytes displayed fewer primary processes. By revealing a widespread reduction of cerebral VIM-IR astrocytes in cases vs. controls, these findings further implicate astrocytic dysfunctions in depression and suicide.

6.
Front Neuroanat ; 14: 31, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32848635

RESUMO

Astrocytes are commonly identified by their expression of the intermediate filament protein glial fibrillary acidic protein (GFAP). GFAP-immunoreactive (GFAP-IR) astrocytes exhibit regional heterogeneity in density and morphology in the mouse brain as well as morphological diversity in the human cortex. However, regional variations in astrocyte distribution and morphology remain to be assessed comprehensively. This was the overarching objective of this postmortem study, which mainly exploited the immunolabeling of vimentin (VIM), an intermediate filament protein expressed by astrocytes and endothelial cells which presents the advantage of more extensively labeling cell structures. We compared the densities of vimentin-immunoreactive (VIM-IR) and GFAP-IR astrocytes in various brain regions (prefrontal and primary visual cortex, caudate nucleus, mediodorsal thalamus) from male individuals having died suddenly in the absence of neurological or psychiatric conditions. The morphometric properties of VIM-IR in these brain regions were also assessed. We found that VIM-IR astrocytes generally express the canonical astrocytic markers Aldh1L1 and GFAP but that VIM-IR astrocytes are less abundant than GFAP-IR astrocytes in all human brain regions, particularly in the thalamus, where VIM-IR cells were nearly absent. About 20% of all VIM-IR astrocytes presented a twin cell morphology, a phenomenon rarely observed for GFAP-IR astrocytes. Furthermore VIM-IR astrocytes in the striatum were often seen to extend numerous parallel processes which seemed to give rise to large VIM-IR fiber bundles projecting over long distances. Moreover, morphometric analyses revealed that VIM-IR astrocytes were more complex than their mouse counterparts in functionally homologous brain regions, as has been previously reported for GFAP-IR astrocytes. Lastly, the density of GFAP-IR astrocytes in gray and white matter were inversely correlated with vascular density, but for VIM-IR astrocytes this was only the case in gray matter, suggesting that gliovascular interactions may especially influence the regional heterogeneity of GFAP-IR astrocytes. Taken together, these findings reveal special features displayed uniquely by human VIM-IR astrocytes and illustrate that astrocytes display important region- and marker-specific differences in the healthy human brain.

7.
Nat Neurosci ; 23(6): 771-781, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32341540

RESUMO

Major depressive disorder (MDD) has an enormous impact on global disease burden, affecting millions of people worldwide and ranking as a leading cause of disability for almost three decades. Past molecular studies of MDD employed bulk homogenates of postmortem brain tissue, which obscures gene expression changes within individual cell types. Here we used single-nucleus transcriptomics to examine ~80,000 nuclei from the dorsolateral prefrontal cortex of male individuals with MDD (n = 17) and of healthy controls (n = 17). We identified 26 cellular clusters, and over 60% of these showed differential gene expression between groups. We found that the greatest dysregulation occurred in deep layer excitatory neurons and immature oligodendrocyte precursor cells (OPCs), and these contributed almost half (47%) of all changes in gene expression. These results highlight the importance of dissecting cell-type-specific contributions to the disease and offer opportunities to identify new avenues of research and novel targets for treatment.


Assuntos
Transtorno Depressivo Maior/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Neurônios/metabolismo , Células Precursoras de Oligodendrócitos/metabolismo , Córtex Pré-Frontal/metabolismo , Transcriptoma , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Redes Reguladoras de Genes , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
8.
Sci Rep ; 8(1): 938, 2018 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-29343737

RESUMO

Synaptic loss, plaques and neurofibrillary tangles are viewed as hallmarks of Alzheimer's disease (AD). This study investigated synaptic markers in neocortical Brodmann area 9 (BA9) samples from 171 subjects with and without AD at different levels of cognitive impairment. The expression levels of vesicular glutamate transporters (VGLUT1&2), glutamate uptake site (EAAT2), post-synaptic density protein of 95 kD (PSD95), vesicular GABA/glycine transporter (VIAAT), somatostatin (som), synaptophysin and choline acetyl transferase (ChAT) were evaluated. VGLUT2 and EAAT2 were unaffected by dementia. The VGLUT1, PSD95, VIAAT, som, ChAT and synaptophysin expression levels significantly decreased as dementia progressed. The maximal decrease varied between 12% (synaptophysin) and 42% (som). VGLUT1 was more strongly correlated with dementia than all of the other markers (polyserial correlation = -0.41). Principal component analysis using these markers was unable to differentiate the CDR groups from one another. Therefore, the status of the major synaptic markers in BA9 does not seem to be linked to the cognitive status of AD patients. The findings of this study suggest that the loss of synaptic markers in BA9 is a late event that is only weakly related to AD dementia.


Assuntos
Doença de Alzheimer/metabolismo , Biomarcadores/metabolismo , Cognição/fisiologia , Córtex Pré-Frontal/metabolismo , Sinapses/metabolismo , Idoso de 80 Anos ou mais , Colina O-Acetiltransferase/metabolismo , Feminino , Ácido Glutâmico/metabolismo , Humanos , Masculino , Neurônios/metabolismo , Sinaptofisina/metabolismo , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo
9.
Am J Psychiatry ; 174(12): 1185-1194, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28750583

RESUMO

OBJECTIVE: Child abuse has devastating and long-lasting consequences, considerably increasing the lifetime risk of negative mental health outcomes such as depression and suicide. Yet the neurobiological processes underlying this heightened vulnerability remain poorly understood. The authors investigated the hypothesis that epigenetic, transcriptomic, and cellular adaptations may occur in the anterior cingulate cortex as a function of child abuse. METHOD: Postmortem brain samples from human subjects (N=78) and from a rodent model of the impact of early-life environment (N=24) were analyzed. The human samples were from depressed individuals who died by suicide, with (N=27) or without (N=25) a history of severe child abuse, as well as from psychiatrically healthy control subjects (N=26). Genome-wide DNA methylation and gene expression were investigated using reduced representation bisulfite sequencing and RNA sequencing, respectively. Cell type-specific validation of differentially methylated loci was performed after fluorescence-activated cell sorting of oligodendrocyte and neuronal nuclei. Differential gene expression was validated using NanoString technology. Finally, oligodendrocytes and myelinated axons were analyzed using stereology and coherent anti-Stokes Raman scattering microscopy. RESULTS: A history of child abuse was associated with cell type-specific changes in DNA methylation of oligodendrocyte genes and a global impairment of the myelin-related transcriptional program. These effects were absent in the depressed suicide completers with no history of child abuse, and they were strongly correlated with myelin gene expression changes observed in the animal model. Furthermore, a selective and significant reduction in the thickness of myelin sheaths around small-diameter axons was observed in individuals with history of child abuse. CONCLUSIONS: The results suggest that child abuse, in part through epigenetic reprogramming of oligodendrocytes, may lastingly disrupt cortical myelination, a fundamental feature of cerebral connectivity.


Assuntos
Sobreviventes Adultos de Maus-Tratos Infantis , Metilação de DNA , Expressão Gênica , Giro do Cíngulo/metabolismo , Bainha de Mielina/metabolismo , Neurônios/metabolismo , Oligodendroglia/metabolismo , Animais , Axônios/patologia , Estudos de Casos e Controles , Contagem de Células , Epigênese Genética , Humanos , Bainha de Mielina/ultraestrutura , Ratos , Transcrição Gênica
10.
Sci Rep ; 6: 30467, 2016 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-27469430

RESUMO

Adult hippocampal neurogenesis is associated with learning and affective behavioural regulation. Its diverse functionality is segregated along the septotemporal axis from the dorsal to ventral hippocampus. However, features distinguishing immature neurons in these regions have yet to be characterized. Additionally, although we have shown that administration of the neurotrophic factor neuregulin-1 (NRG1) selectively increases proliferation and overall neurogenesis in the mouse ventral dentate gyrus (DG), likely through ErbB3, NRG1's effects on intermediate neurogenic stages in immature neurons are unknown. We examined whether NRG1 administration increases DG ErbB3 phosphorylation. We labeled adultborn cells using BrdU, then administered NRG1 to examine in vivo neurogenic effects on immature neurons with respect to cell survival, morphology, and synaptogenesis. We also characterized features of immature neurons along the septotemporal axis. We found that neurogenic effects of NRG1 are temporally and subregionally specific to proliferation in the ventral DG. Particular morphological features differentiate immature neurons in the dorsal and ventral DG, and cytogenesis differed between these regions. Finally, we identified synaptic heterogeneity surrounding the granule cell layer. These results indicate neurogenic involvement of NRG1-induced antidepressant-like behaviour is particularly associated with increased ventral DG cell proliferation, and identify novel distinctions between dorsal and ventral hippocampal neurogenic development.


Assuntos
Envelhecimento/metabolismo , Diferenciação Celular/efeitos dos fármacos , Hipocampo/citologia , Neuregulina-1/administração & dosagem , Neuregulina-1/farmacologia , Neurogênese/efeitos dos fármacos , Neurônios/citologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Dendritos/efeitos dos fármacos , Dendritos/metabolismo , Giro Denteado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Receptor ErbB-3/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/metabolismo
11.
Sci Rep ; 6: 24544, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27090093

RESUMO

Fixed human brain samples in tissue repositories hold great potential for unlocking complexities of the brain and its alteration with disease. However, current methodology for simultaneously resolving complex three-dimensional (3D) cellular anatomy and organization, as well as, intricate details of human brain cells in tissue has been limited due to weak labeling characteristics of the tissue and high background levels. To expose the potential of these samples, we developed a method to overcome these major limitations. This approach offers an unprecedented view of cytoarchitecture and subcellular detail of human brain cells, from cellular networks to individual synapses. Applying the method to AD samples, we expose complex features of microglial cells and astrocytes in the disease. Through this methodology, we show that these cells form specialized 3D structures in AD that we refer to as reactive glial nets (RGNs). RGNs are areas of concentrated neuronal injury, inflammation, and tauopathy and display unique features around ß-amyloid plaque types. RGNs have conserved properties in an AD mouse model and display a developmental pattern coinciding with the progressive accumulation of neuropathology. The method provided here will help reveal novel features of the healthy and diseased human brain, and aid experimental design in translational brain research.


Assuntos
Doença de Alzheimer/fisiopatologia , Encéfalo/fisiopatologia , Neuroglia/patologia , Placa Amiloide/fisiopatologia , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico por imagem , Animais , Astrócitos/patologia , Encéfalo/diagnóstico por imagem , Diagnóstico , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Microglia/patologia , Neurônios/patologia , Placa Amiloide/diagnóstico por imagem , Sinapses/patologia
12.
Front Aging Neurosci ; 8: 327, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28154533

RESUMO

Interneurons, key regulators of hippocampal neuronal network excitability and synchronization, are lost in advanced stages of Alzheimer's disease (AD). Given that network changes occur at early (presymptomatic) stages, we explored whether alterations of interneurons also occur before amyloid-beta (Aß) accumulation. Numbers of neuropeptide Y (NPY) and parvalbumin (PV) immunoreactive (IR) cells were decreased in the hippocampus of 1 month-old TgCRND8 mouse AD model in a sub-regionally specific manner. The most prominent change observed was a decrease in the number of PV-IR cells that selectively affected CA1/2 and subiculum, with the pyramidal layer (PY) of CA1/2 accounting almost entirely for the reduction in number of hippocampal PV-IR cells. As PV neurons were decreased selectively in CA1/2 and subiculum, and given that they are critically involved in the control of hippocampal theta oscillations, we then assessed intrinsic theta oscillations in these regions after a 4-aminopyridine (4AP) challenge. This revealed increased theta power and population bursts in TgCRND8 mice compared to non-transgenic (nTg) controls, suggesting a hyperexcitability network state. Taken together, our results identify for the first time AD-related alterations in hippocampal interneuron function as early as at 1 month of age. These early functional alterations occurring before amyloid deposition may contribute to cognitive dysfunction in AD.

13.
Front Psychiatry ; 6: 138, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26539126

RESUMO

The inflammatory hypothesis of depression is one of the main theories that endeavors to explain and describe the underlying biological mechanisms of depression and suicide. While mounting evidence indicates altered peripheral and central inflammatory profiles in depressed patients and suicide completers, little is known about how peripheral and central inflammation might be linked in these contexts. The choroid plexus (ChP), a highly vascularized tissue that produces cerebrospinal fluid (CSF) and lacks a blood-brain-barrier, is an interface between peripheral and central immune responses. In the present study, we investigated the cellular and molecular inflammatory profile of the ChP of the lateral ventricle in depressed suicides and psychiatrically healthy controls. Gene expression of macrophages, pro- and anti-inflammatory cytokines, and various factors implicated in immune cell trafficking were measured; and density of ionized calcium-binding adaptor molecule 1-positive (Iba1+) macrophages associated with the ChP epithelial cell layer (ECL) was examined. Significant downregulations of the genes encoding interleukin 1ß (IL1ß), a pro-inflammatory acute-phase protein; intercellular cell adhesion molecule 1 (ICAM1), a protein implicated in immune cell trafficking in the ChP; and IBA1, a monocyte/macrophage marker; were detected in depressed suicides as compared to controls. No difference in the density of Iba1+ macrophages associated with the ChP ECL was observed. While interpretation of these findings is challenging in the absence of corroborating data from the CSF, peripheral blood, or brain parenchyma of the present cohort, we hypothesize that the present findings reflect a ChP compensatory mechanism that attenuates the detrimental effects of chronically altered pro-inflammatory signaling caused by elevated levels of pro-inflammatory cytokines, such as IL-1ß, peripherally and/or centrally. Together, these findings further implicate neuroimmune processes in the etiology of depression and suicide.

14.
Front Neuroanat ; 9: 74, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26082689

RESUMO

Postmortem studies have confirmed the occurrence of adult hippocampal neurogenesis in humans and implicated this process in antidepressant response, yet neurogenesis in other regions remains to be examined in the context of depression. Here we assess the extent of subventricular zone-olfactory bulb (SVZ-OB) neurogenesis in adult humans having died by suicide. Protein expression of proliferative and neurogenic markers Sox2, proliferating cell nuclear antigen, and doublecortin (DCX) were examined in postmortem SVZ and OB samples from depressed suicides and matched sudden-death controls. In the SVZ, DCX-immunoreactive (IR) cells displayed phenotypes typical of progenitors, whereas in the olfactory tract (OT), they were multipolar with variable size and morphologies suggestive of differentiating cells. DCX expression was significantly increased in the OB of suicides, whereas SVZ DCX expression was higher among unmedicated, but not antidepressant-treated, suicides. Although very few DCX-IR cells were present in the control OT, they were considerably more common in suicides and correlated with OB DCX levels. Suicides also displayed higher DCX-IR process volumes. These results support the notion that OB neurogenesis is minimal in adult humans. They further raise the possibility that the differentiation and migration of SVZ-derived neuroblasts may be altered in unmedicated suicides, leading to an accumulation of ectopically differentiating cells in the OT. Normal SVZ DCX expression among suicides receiving antidepressants suggests a potentially novel mode of action of antidepressant medication. Given the modest group sizes and rarity of DCX-IR cells assessed here, a larger-scale characterization will be required before firm conclusions can be made regarding the identity of these cells.

15.
Front Aging Neurosci ; 7: 30, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25852545

RESUMO

Hippocampal network activity is predominantly coordinated by γ-amino-butyric acid (GABA)ergic neurons. We have previously hypothesized that the altered excitability of hippocampal neurons in Alzheimer's disease (AD), which manifests as increased in vivo susceptibility to seizures in the TgCRND8 mouse model of AD, may be related to disruption of hippocampal GABAergic neurons. In agreement, our previous study in TgCRND8 mice has shown that hippocampal GABAergic neurons are more vulnerable to AD-related neuropathology than other types of neurons. To further explore the mechanisms behind the observed decrease of GABAergic neurons in 6 month-old TgCRND8 mice, we assessed the relative proportion of somatostatin (SOM), neuropeptide Y (NPY) and paravalbumin (PV) sub-types of GABAergic neurons at the regional and sub-regional level of the hippocampus. We found that NPY expressing GABAergic neurons were the most affected, as they were decreased in CA1-CA2 (pyramidal-, stratum oriens, stratum radiatum and molecular layers), CA3 (specifically in the stratum oriens) and dentate gyrus (specifically in the polymorphic layer) in TgCRND8 mice as compared to non-transgenic controls. SOM expressing GABAergic neurons were decreased in CA1-CA2 (specifically in the stratum oriens) and in the stratum radiatum of CA3, whereas PV neurons were significantly altered in stratum oriens sub-region of CA3. Taken together, these data provide new evidence for the relevance of hippocampal GABAergic neuronal network disruption as a mechanism underlying AD sequelae such as aberrant neuronal excitability, and further point to complex hippocampal regional and sub-regional variation in susceptibility to AD-related neuronal loss.

16.
J Psychiatr Res ; 47(3): 384-90, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23260340

RESUMO

INTRODUCTION: Doublecortin (DCX) and polysialilated neural cell adhesion molecule (PSA-NCAM), two proteins associated with immature neuronal phenotypes and elevated neuroplasticity in the adult brain, have recently been identified in the mammalian amygdala, and evidence from rodent studies suggests that stress may modify their expression in this brain region. The purpose of the present study was to investigate whether the expression of proteins involved in neuroplasticity is altered in the amygdala of individuals with depression. METHODS: Basolateral amygdala (BLA) and central amygdala (CeA) postmortem human brain samples were collected from individuals with a history of depression (n = 22 and 25, respectively) and psychiatrically healthy controls (CTRL; n = 14). Proteins associated with neuroplasticity were quantified using Western blotting. RESULTS: Immunoblots revealed that depressed subjects displayed increased expression of DCX (p = 0.033) and PSA-NCAM (p = 0.027) in the BLA as compared to CTRLs. Subsequent analyses revealed that this effect was due primarily to a subset of depressed subjects who had not died by suicide (DNS). DNS subjects displayed higher DCX than CTRLs (p < 0.001) and depressed suicides (p = 0.001), and higher PSA-NCAM than CTRLs (p = 0.007). Conversely, within the CeA, DNS subjects displayed a tendency toward lower DCX expression than CTRLs (p = 0.062), and higher BDNF levels than DS subjects (p = 0.045). CONCLUSION: These results suggest that the BLA and CeA display contrasting patterns of neuroplasticity in depression, and that greater impairment of amygdalar neuroplasticity may be associated with increased risk of suicide.


Assuntos
Tonsila do Cerebelo/metabolismo , Transtorno Depressivo Maior/patologia , Proteínas Associadas aos Microtúbulos/metabolismo , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Neuropeptídeos/metabolismo , Ácidos Siálicos/metabolismo , Suicídio , Adulto , Idoso , Proteínas do Domínio Duplacortina , Proteína Duplacortina , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mudanças Depois da Morte , Antígeno Nuclear de Célula em Proliferação/metabolismo , Estatística como Assunto , Estatísticas não Paramétricas
17.
PLoS One ; 7(5): e37219, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22615944

RESUMO

RATIONALE: The influence of developmental nicotine exposure on the brain represents an important health topic in light of the popularity of nicotine replacement therapy (NRT) as a smoking cessation method during pregnancy. OBJECTIVES: In this study, we used a model of NRT during pregnancy and breastfeeding to explore the consequences of chronic developmental nicotine exposure on cerebral neuroplasticity in the offspring. We focused on two dynamic lifelong phenomena in the dentate gyrus (DG) of the hippocampus that are highly sensitive to the environment: granule cell neurogenesis and long-term potentiation (LTP). METHODS: Pregnant rats were implanted with osmotic mini-pumps delivering either nicotine or saline solutions. Plasma nicotine and metabolite levels were measured in dams and offspring. Corticosterone levels, DG neurogenesis (cell proliferation, survival and differentiation) and glutamatergic electrophysiological activity were measured in pups. RESULTS: Juvenile (P15) and adolescent (P41) offspring exposed to nicotine throughout prenatal and postnatal development displayed no significant alteration in DG neurogenesis compared to control offspring. However, NRT-like nicotine exposure significantly increased LTP in the DG of juvenile offspring as measured in vitro from hippocampal slices, suggesting that the mechanisms underlying nicotine-induced LTP enhancement previously described in adult rats are already functional in pups. CONCLUSIONS: These results indicate that synaptic plasticity is disrupted in offspring breastfed by dams passively exposed to nicotine in an NRT-like fashion.


Assuntos
Giro Denteado/fisiologia , Plasticidade Neuronal/fisiologia , Nicotina/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Cotinina/sangue , Giro Denteado/efeitos dos fármacos , Giro Denteado/crescimento & desenvolvimento , Feminino , Potenciação de Longa Duração/efeitos dos fármacos , Modelos Animais , Neurogênese/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Nicotina/administração & dosagem , Nicotina/sangue , Gravidez , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Ratos , Ratos Sprague-Dawley , Transmissão Sináptica/efeitos dos fármacos
18.
J Alzheimers Dis ; 29(2): 293-308, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22232004

RESUMO

The relevance of γ-amino-butyric acid (GABA)-ergic dysfunctions in the pathology of Alzheimer's disease (AD) remains a matter of debate. In the present study, we characterized the toxicity of amyloid-ß (Aß) on hippocampal GABAergic neurons both in vivo and in vitro. In the TgCRND8 mouse model of AD, we found a significant decrease in the number of hippocampal neurons immunoreactive for glutamate decarboxylase 67 (GAD67), the enzyme synthesizing GABA. This decrease, which was specific for hippocampal CA1-3 fields, was observed at 6 months of age, long after the overproduction of soluble Aß42 (between 2 and 4 months) and accumulation of insoluble Aß into amyloid plaques (between 4 and 6 months). In vitro, neurotoxicity was observed in primary hippocampal cultures 72 h following the addition of Aß42 solutions containing a mixture of soluble oligomers. Taken together, our results suggest that when cultured and exposed to Aß in vitro, GABAergic neurons are susceptible to Aß42 neurotoxicity. However, in TgCRND8 mice, the number of GABAergic neurons is not altered up to 6 months, in spite of the massive Aß load. Combined with the previously reported increased sensitivity to seizures observed in younger (1.5-2 month-old) TgCRND8 mice, it is likely that Aß toxicity leads to GABAergic neuron dysfunction prior to their losses at a later stage.


Assuntos
Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/toxicidade , Neurônios GABAérgicos/efeitos dos fármacos , Hipocampo/patologia , Fragmentos de Peptídeos/toxicidade , Fatores Etários , Doença de Alzheimer/genética , Animais , Morte Celular/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Embrião de Mamíferos , Ensaio de Imunoadsorção Enzimática/métodos , Neurônios GABAérgicos/metabolismo , Glutamato Descarboxilase/metabolismo , Hipocampo/citologia , Humanos , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação/genética , Neurônios/efeitos dos fármacos , Fosfopiruvato Hidratase/metabolismo , Presenilina-1/genética , Ratos , Ratos Wistar , Fatores de Tempo , Proteína Vesicular 1 de Transporte de Glutamato/metabolismo
19.
PLoS One ; 6(10): e26610, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22028923

RESUMO

BACKGROUND: Adult hippocampal neurogenesis has been implicated in the mechanism of antidepressant action, and neurotrophic factors can mediate the neurogenic changes underlying these effects. The neurotrophic factor neuregulin-1 (NRG1) is involved in many aspects of brain development, from cell fate determination to neuronal maturation. However, nothing is known about the influence of NRG1 on neurodevelopmental processes occurring in the mature hippocampus. METHODS: Adult male mice were given subcutaneous NRG1 or saline to assess dentate gyrus proliferation and neurogenesis, as well as cell fate determination. Mice also underwent behavioral testing. Expression of ErbB3 and ErbB4 NRG1 receptors in newborn dentate gyrus cells was assessed at various time points between birth and maturity. The phenotype of ErbB-expressing progenitor cells was also characterized with cell type-specific markers. RESULTS: The current study shows that subchronic peripheral NRG1ß administration selectively increased cell proliferation (by 71%) and neurogenesis (by 50%) in the caudal dentate gyrus within the ventral hippocampus. This pro-proliferative effect did not alter neuronal fate, and may have been mediated by ErbB3 receptors, which were expressed by newborn dentate gyrus cells from cell division to maturity and colocalized with SOX2 in the subgranular zone. Furthermore, four weeks after cessation of subchronic treatment, animals displayed robust antidepressant-like behavior in the absence of changes in locomotor activity, whereas acute treatment did not produce antidepressant effects. CONCLUSIONS: These results show that neuregulin-1ß has pro-proliferative, neurogenic and antidepressant properties, further highlight the importance of peripheral neurotrophic factors in neurogenesis and mood, and support the role of hippocampal neurogenesis in mediating antidepressant effects.


Assuntos
Antidepressivos/administração & dosagem , Antidepressivos/farmacologia , Giro Denteado/citologia , Giro Denteado/efeitos dos fármacos , Neuregulina-1/administração & dosagem , Neuregulina-1/farmacologia , Neurogênese/efeitos dos fármacos , Animais , Antidepressivos/metabolismo , Comportamento Animal/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Bromodesoxiuridina/metabolismo , Proliferação de Células/efeitos dos fármacos , Giro Denteado/metabolismo , Proteínas de Filamentos Intermediários/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/metabolismo , Nestina , Neuregulina-1/metabolismo , Transporte Proteico/efeitos dos fármacos , Fatores de Transcrição SOXB1/metabolismo , Fatores de Tempo
20.
Neuropsychopharmacology ; 36(13): 2650-8, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21814185

RESUMO

Increasing evidence suggests that cortical astrocytic function is disrupted in mood disorders and suicide. The fine neuroanatomy of astrocytes, however, remains to be investigated in these psychiatric conditions. In this study, we performed a detailed morphometric analysis of 3D-reconstructed gray and white matter astrocytes in Golgi-impregnated anterior cingulate cortex (ACC) samples from depressed suicides and matched controls. Postmortem ACC samples (BA24) from 10 well-characterized depressed suicides and 10 matched sudden-death controls were obtained from the Quebec Suicide Brain Bank. Golgi-impregnated protoplasmic astrocytes (gray matter, layer VI) and fibrous astrocytes (adjacent white matter) were reconstructed, and their morphometric features were analyzed using the Neurolucida software. For each cell, the soma size as well as the number, length, and branching of processes were determined. The densities of thorny protrusions found along the processes of both astrocytic subtypes were also determined. Protoplasmic astrocytes showed no significant difference between groups for any of the quantified parameters. However, fibrous astrocytes had significantly larger cell bodies, as well as longer, more ramified processes in depressed suicides, with values for these parameters being about twice as high as those measured in controls. These results provide the first evidence of altered cortical astrocytic morphology in mood disorders. The presence of hypertrophic astrocytes in BA24 white matter is consistent with reports suggesting white matter alterations in depression, and provides further support to the neuroinflammatory theory of depression.


Assuntos
Astrócitos/patologia , Transtorno Depressivo/patologia , Giro do Cíngulo/patologia , Fibras Nervosas Mielinizadas/patologia , Suicídio/psicologia , Adulto , Transtorno Depressivo/psicologia , Feminino , Giro do Cíngulo/fisiopatologia , Humanos , Hipertrofia , Masculino , Pessoa de Meia-Idade , Vias Neurais/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...