Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 26(8)2021 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-33920742

RESUMO

Excessive UV solar radiation exposure causes human health risks; therefore, the study of multifunctional filters is important to skin UV protective ability and also to other beneficial activities to the human organism, such as reduction of reactive oxygen species (ROS) responsible for cellular damages. Potential multifunctional filters were obtained by intercalating of ferulate anions into layered simple metal hydroxides (LSH) through anion exchange and precipitation at constant pH methods. Ultrasound treatment was used in order to investigate the structural changes in LSH-ferulate materials. Structural and spectroscopic analyses show the formation of layered materials composed by a mixture of LSH intercalated with ferulate anions, where carboxylate groups of ferulate species interact with LSH layers. UV-VIS absorption spectra and in vitro SPF measurements indicate that LSH-ferulate systems have UV shielding capacity, mainly UVB protection. The results of reactive species assays show the ability of layered compounds in capture DPPH•, ABTS•+, ROO•, and HOCl/OCl- reactive species. LSH-ferulate materials exhibit antioxidant activity and singular optical properties that enable their use as multifunctional filters.


Assuntos
Hidróxidos/química , Protetores contra Radiação/química , Raios Ultravioleta/efeitos adversos , Zinco/química , Ânions/química , Antioxidantes/efeitos da radiação , Humanos , Substâncias Intercalantes/química , Metais/química , Espécies Reativas de Oxigênio/química , Pele/efeitos dos fármacos , Pele/efeitos da radiação , Sistema Solar/química , Análise Espectral
2.
Dalton Trans ; (11): 1487-91, 2008 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-18322629

RESUMO

Highly crystalline ZnO and Ga-modified zinc oxide (ZnO:Ga) nanoparticles containing 1, 3 and 5 atom% of Ga3+ were prepared by precipitation method at low temperature. The films were characterized by XRD, BET, XPS and SEM. No evidence of zinc gallate formation (ZnGa2O4), even in the samples containing 5 atom% of gallium, was detected by XRD. XPS data revealed that Ga is present into the ZnO matrix as Ga3+, according to the characteristic binding energies. The particle size decreased as the gallium level was increased as observed by SEM, which might be related to a faster hydrolysis reaction rate. The smaller particle size provided films with higher porosity and surface area, enabling a higher dye loading. When these films were applied to dye-sensitized solar cells (DSSCs) as photoelectrodes, the device based on ZnO:Ga 5 atom% presented an overall conversion efficiency of 6% (at 10 mW cm(-2)), a three-fold increase compared to the ZnO-based DSSCs under the same conditions. To our knowledge, this is one of the highest efficiencies reported so far for ZnO-based DSSCs. Transient absorption (TAS) study of the photoinduced dynamics of dye-sensitized ZnO:Ga films showed that the higher the gallium content, the higher the amount of dye cation formed, while no significant change on the recombination dynamics was observed. The study indicates that Ga-modification of nanocrystalline ZnO leads to an improvement of photocurrent and overall efficiency in the corresponding device.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...