Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Agric Food Chem ; 72(1): 189-199, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38113060

RESUMO

Flavescence dorée phytoplasma (FDp) is a phytopathogenic bacterium associated with Grapevine yellowS disease, which causes heavy damage to viticultural production. Epidemiological data revealed that some FDp strains appear to be more widespread and aggressive. However, there is no data on mechanisms underlying the variable pathogenicity among strains. In this research, we employed chromatographic and spectrophotometric techniques to assess how two strains of FDp influence the levels of grapevine phenolic compounds, which are frequently utilized as indicative markers of stress conditions. The results pointed to the upregulation of all branches of phenolic metabolism through the development of infection, correlating with the increase in antioxidative capacity. The more aggressive strain M54 induced stronger downregulation of phenolics' accumulation at the beginning and higher upregulation by the end of the season than the less aggressive M38 strain. These findings reveal potential targets of FDp effectors and provide the first functional demonstration of variable pathogenicity between FDp strains, suggesting the need for future comparative genomic analyses of FDp strains as an important factor in exploring the management possibilities of FDp.


Assuntos
Hemípteros , Phytoplasma , Vitis , Animais , Doenças por Fitoplasmas , Doenças das Plantas/microbiologia , Vitis/metabolismo , Hemípteros/fisiologia , Phytoplasma/genética , Fenóis/metabolismo
2.
Food Chem ; 420: 136186, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37087866

RESUMO

Interspecific metabolite transfer (ISMT) is a novel approach for plants biofortification. In this study, the effect of tea (Camellia sinensis; Cs), with or without membrane permeabilizers EDTA and Tween, as a donor plant on broccoli, cauliflower and kale sprouts was investigated. As a result, caffeine- and catechin-enriched broccoli, cauliflower and kale microgreens were produced. Kale sprouts were most permeable for catechins from Cs, while cauliflower was most permeable for caffeine. Cs + EDTA significantly increased vitamin C in broccoli and kale. Among the tested enzymes activity, pancreatic lipase was the most affected by the treatment with broccoli and cauliflower biofortified with Cs or Cs combined with permeabilizers. Broccoli sprouts biofortified with Cs most significantly inhibited α-amylase, while those biofortified with Cs combined with permeabilizers most significantly inhibited α-glucosidase. Results point to ISMT combined with membrane permeabilizers as a promising and eco-friendly biofortification strategy to improve the biopotential of Brassica microgreens.


Assuntos
Brassica , Camellia sinensis , Catequina , Camellia sinensis/metabolismo , Cafeína/metabolismo , Brassica/metabolismo , Catequina/metabolismo , Chá , Ácido Edético/metabolismo , Biofortificação
3.
Plants (Basel) ; 12(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36903996

RESUMO

The goal of this work was to define resistant and susceptible variables of young broccoli (Brassica oleracea L. convar. botrytis (L.) Alef. var. cymosa Duch.) plants treated with cold and hot water. Additionally, we wanted to single out variables that could potentially be used as biomarkers of cold/hot-water stress in broccoli. Hot water changed more variables (72%) of young broccoli than cold water (24%) treatment. Hot water increased the concentration of vitamin C for 33%, hydrogen peroxide for 10%, malondialdehyde for 28%, and proline for 147%. Extracts of broccoli stressed with hot water were significantly more efficient in the inhibition of α-glucosidase (65.85 ± 4.85% compared to 52.00 ± 5.16% of control plants), while those of cold-water-stressed broccoli were more efficient in the inhibition of α-amylase (19.85 ± 2.70% compared to 13.26 ± 2.36% of control plants). Total glucosinolates and soluble sugars were affected by hot and cold water in an opposite way, which is why they could be used as biomarkers of hot/cold-water stress in broccoli. The possibility of using temperature stress to grow broccoli enriched with compounds of interest to human health should be further investigated.

4.
Plants (Basel) ; 11(3)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35161257

RESUMO

The aim of this work was to assess the biopotential of the young inflorescence tissues of Prunus, Malus and Chaenomeles in order to evaluate the possibility of their application in the food industry, and to provide a polyphenolic fingerprint for their quality control. The contents of different bioactive compounds and their antioxidant capacities were spectrophotometrically measured, the main phenolic compounds were identified and quantified using LC-DAD-MS, the antidiabetic potential was determined using α-amylase and α-glucosidase inhibition assays, the anti-inflammatory potential was determined using a 5-lipoxygenase inhibition assay, and the cytotoxicity was determined by MTT assay. Using one-way ANOVA, principal component analysis, hierarchical clustering and Pearson's correlation coefficient, the relations between the samples, and between the samples and the measured parameters, were revealed. In total, 77 compounds were identified. The concentration of sugars was low in M. purpurea, at 1.56 ± 0.08 mg/g DW. The most effective sample in the inhibition of antidiabetic enzymes and anti-inflammatory 5-lipoxygenase was C. japonica. The inhibition of α-glucosidase was strongly positively correlated with the total and condensed tannins, procyanidin dimers and procyanidin tetramer, and was very strongly correlated with chlorogenic acid. In α-amylase inhibition, C. japonica and P. serrulata 'Kiku Shidare Zakura' were equally efficient to the standard inhibitor, maltose. The most effective in the growth and proliferation inhibition of HepG2, HCT116 and HaCaT cells was P. avium. The results suggest Prunus, Malus and Chaenomeles inflorescences as functional food ingredients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...