Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38330915

RESUMO

Van der Waals (vdW) magnets are promising, because of their tunable magnetic properties with doping or alloy composition, where the strength of magnetic interactions, their symmetry, and magnetic anisotropy can be tuned according to the desired application. However, so far, most of the vdW magnet-based spintronic devices have been limited to cryogenic temperatures with magnetic anisotropies favoring out-of-plane or canted orientation of the magnetization. Here, we report beyond room-temperature lateral spin-valve devices with strong in-plane magnetization and spin polarization of the vdW ferromagnet (Co0.15Fe0.85)5GeTe2 (CFGT) in heterostructures with graphene. Density functional theory (DFT) calculations show that the magnitude of the anisotropy depends on the Co concentration and is caused by the substitution of Co in the outermost Fe layer. Magnetization measurements reveal the above room-temperature ferromagnetism in CFGT and clear remanence at room temperature. Heterostructures consisting of CFGT nanolayers and graphene were used to experimentally realize basic building blocks for spin valve devices, such as efficient spin injection and detection. Further analysis of spin transport and Hanle spin precession measurements reveals a strong in-plane magnetization with negative spin polarization at the interface with graphene, which is supported by the calculated spin-polarized density of states of CFGT. The in-plane magnetization of CFGT at room temperature proves its usefulness in graphene lateral spin-valve devices, thus revealing its potential application in spintronic technologies.

2.
Phys Chem Chem Phys ; 26(3): 1936-1949, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38116600

RESUMO

Graphene Nano Ribbons (GNRs) have been studied extensively due to their potential applications in electrical transport, optical devices, etc. The Tight Binding (TB) model is a common method used to theoretically study the properties of GNRs. However, the hopping parameters of two-dimensional graphene (2DG) are often used as the hopping parameters of the TB model of GNRs, which may lead to inaccuracies in the prediction of GNRs. In this work, we calculated the site-dependent hopping parameters from density functional theory and construction of Wannier orbitals for use in a realistic TB model. It has been found that due to the edge effect, the hopping parameters of edge C atoms are markedly different from the bulk part, which is prominently observed in narrow GNRs. Compared to graphene, the change of hopping parameter of edge C atoms of zigzag GNRs (ZGNRs) and armchair GNRs (AGNRs) is as high as 0.11 and 0.08 eV, respectively. Moreover, we investigated the impact of the calculated site-dependent (SD) hopping parameters on the electronic transport properties of GNRs in the absence and presence of the perpendicular electric field and dilute charged impurities using the Green function approach, Landauer-Büttiker formalism and self-consistent Born approximation. We find an electron-hole asymmetry in the electronic structure and transport properties of ZGNRs with SD hopping parameters. Furthermore, AGNRs with SD hopping energies show a band gap regardless of their width, while AGNRs with 2DG hopping parameters exhibit metallic or semiconductor phases depending on their width. In addition, electric field-induced 4-ZGNR with SD hopping parameters undergoes a metallic to n-doped semiconducting phase transition whereas for 4-ZGNR with 2DG hopping parameters and 8-AGNRs with 2DG or SD hopping parameters, the application of an electric field opens the band gap in both conduction and valence bands simultaneously. Our findings provide evidence for the electron-hole symmetry breaking in ZGNR with SD hopping parameters and make ZGNRs a suitable candidate in valleytronic devices.

3.
Sci Rep ; 9(1): 10651, 2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31337797

RESUMO

We theoretically address the electronic structure of mono- and simple bi-layer armchair graphene nanoribbons (AGNRs) when they are infected by extrinsic charged dilute impurity. This is done with the aid of the modified tight-binding method considering the edge effects and the Green's function approach. Also, the interplay of host and guest electrons are studied within the full self-consistent Born approximation. Given that the main basic electronic features can be captured from the electronic density of states (DOS), we focus on the perturbed DOS of lattices corresponding to the different widths. The modified model says that there is no metallic phase due to the edge states. We found that the impurity effects lead to the emergence of midgap states in DOS of both systems so that a semiconductor-to-semimetal phase transition occurs at strong enough impurity concentrations and/or impurity scattering potentials. The intensity of semiconductor-to-semimetal phase transition in monolayer (bilayer) ultra-narrow (realistic) ribbons is sharper than bilayers (monolayers). In both lattices, electron-hole symmetry breaks down as a result of induced-impurity states. The findings of this research would provide a base for future experimental studies and improve the applications of AGNRs in logic semiconductor devices in industry.

4.
Phys Chem Chem Phys ; 21(27): 15133-15141, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31243415

RESUMO

In this paper, we have concentrated on the orbital and hybridization effects induced by applied triaxial strain on the interband optical conductivity (IOC) of phosphorene using a two-band Hamiltonian model, linear response theory and the Kubo formula. In particular, we study the dependence of the electronic band structure and of the IOC of a phosphorene single layer on the modulus and direction of the applied triaxial strain. The triaxial strain is included in a model through the introduction of strain-dependent hopping parameters using the Harrison rule. Among the various configurations for applying the triaxial strain, considerable findings are presented here in three classes: (i) uniform, (ii) in-plane uniform and (iii) non-uniform triaxial strain. The main consequence of applying triaxial strain is that of increasing and decreasing the band gap depending on the considered class of study, resulting in a blue shift and red shift of the interband optical transitions, respectively. Our results show that a pure blue shift independent of the strain modulus as well as strain sign (tensile or compressive) emerges when applying non-uniform triaxial strain. The overall feature of our outcomes is tailoring the edge-dependent optical responses of phosphorene in the presence of triaxial strain, which provides the required conditions of tuning the optical properties of phosphorene for future experimental research.

5.
RSC Adv ; 9(33): 19006-19015, 2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35516876

RESUMO

Optical activity is one of the most fascinating fields in current physics. The strong anisotropic feature in monolayer phosphorene leads to the emergence of non-trivial optoelectronic physics. This paper is devoted to a detailed analysis of strain effects on the optical activity of phosphorene ranging from low-optical-field to high-optical-field. To do so, a numerical study of the two-band tight-binding model is accomplished using the Harrison rule and the linear response theory. Although the transparency of phosphorene confirms at all frequencies independent of the strain modulus and direction, on average, from low- to high-optical-field limit, the polarization of the reflected wave at critical strains becomes circular and the ellipse axis tends to a rotation of 180°. It is found that the maximum absorption takes place at high-energy transitions, which quantitatively depends strongly on the strain modulus and direction. Furthermore, a detailed investigation of compressive and tensile strains results in the dominant contribution of the in-plane compressive and out-of-plane tensile strains to the reflected/transmitted light for low- and intermediate-optical-field ranges, whilst both contribute for the high-optical-field limit. However, overall, in-plane compressive and out-of-plane tensile strains come in to play a role in the absorption spectra. Thereby, the quality of the determined reflection, transmission and absorption waves depends on the regarded regime of the optical field, strain modulus, and strain orientation. These findings if sufficient can be performed and/or tuned experimentally, and a vast number of phosphorene-based optoelectronic devices can be achieved.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...