Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 167
Filtrar
1.
Heliyon ; 10(6): e28081, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38524549

RESUMO

Termites are one of the most common pests that damage wood and other cellulosic materials. Although Africa has more varieties of termite species than any other continent, few entomological studies have been conducted in Gabon. Identifying termites poses significant difficulties for entomologists. The aim of this study was to evaluate the reliability and confirm the significance of MALDI-TOF MS in identifying fresh termites collected in equatorial Africa. A total of 108 termites were collected from 13 termite nests during a field mission in 2021 in Lekedi and Bongoville, Gabon. Termites were morphologically identified and subjected to MALDI-TOF MS, then molecular analyses using the COI and 12S rRNA genes. Four termite species were morphologically identified in this study: Pseudacanthotermes militaris, Macrotermes muelleri, Macrotermes nobilis, and Noditermes indoensis. However, when using molecular biology, only three species were identified, namely Macrotermes bellicosus, P. militaris, and N. indoensis, because the specimens initially identified as M. muelleri and M. nobilis were found to be M. bellicosus. The MALDI-TOF MS spectral profiles of the termites were all of good quality, with intra-species reproducibility and inter-species specificity. The spectra of 98 termites were blind tested against our upgraded database, which included the spectra of ten termite specimens. All tested spectra were correctly matched to their respective species, with log score values (LSVs) ranging from 1.649 to 2.592. The mean LSV was 2.215 ± 0.203, and the median was 2.241. However, 95.91% (94/98) of our spectra had LSVs above 1.8. This study demonstrates how a proteomic approach can overcome termites' molecular and morphological identification limitations and serve as a useful taxonomic tool.

2.
Microbiol Spectr ; 12(2): e0514122, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38189277

RESUMO

Methanosphaera stadtmanae was the sole Methanosphaera representative to be cultured and detected by molecular methods in the human gut microbiota, further associated with digestive and respiratory diseases, leaving unknown the actual diversity of human-associated Methanosphaera species. Here, a novel Methanosphaera species, Candidatus Methanosphaera massiliense (Ca. M. massiliense) sp. nov. was isolated by culture using a hydrogen- and carbon dioxide-free medium from one human feces sample. Ca. M. massiliense is a non-motile, 850 nm Gram-positive coccus autofluorescent at 420 nm. Whole-genome sequencing yielded a 29.7% GC content, gapless 1,785,773 bp genome sequence with an 84.5% coding ratio, encoding for alcohol and aldehyde dehydrogenases promoting the growth of Ca. M. massiliense without hydrogen. Screening additional mammal and human feces using a specific genome sequence-derived DNA-polymerase RT-PCR system yielded a prevalence of 22% in pigs, 12% in red kangaroos, and no detection in 149 other human samples. This study, extending the diversity of Methanosphaera in human microbiota, questions the zoonotic sources of Ca. M. massiliense and possible transfer between hosts.IMPORTANCEMethanogens are constant inhabitants in the human gut microbiota in which Methanosphaera stadtmanae was the only cultivated Methanosphaera representative. We grew Candidatus Methanosphaera massiliense sp. nov. from one human feces sample in a novel culture medium under a nitrogen atmosphere. Systematic research for methanogens in human and animal fecal samples detected Ca. M. massiliense in pig and red kangaroo feces, raising the possibility of its zoonotic acquisition. Host specificity, source of acquisition, and adaptation of methanogens should be further investigated.


Assuntos
Macropodidae , Methanobacteriaceae , Humanos , Animais , Suínos , Macropodidae/genética , Methanobacteriaceae/genética , Metano , Fezes , Hidrogênio , Etanol , Filogenia , RNA Ribossômico 16S/genética
3.
Pathogens ; 12(11)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-38003741

RESUMO

Ticks are a significant group of arthropod vectors that transmit a large variety of pathogens responsible for human and animal diseases worldwide. Ticks are the second biggest transmitters of vector-borne diseases, behind mosquitoes. However, in West Africa, there is often only limited knowledge of tick-borne diseases. With the scarcity of appropriate diagnostic services, the prevalence of tick-borne diseases is generally underestimated in humans. In this review, we provide an update on tick-borne pathogens reported in people, animals and ticks in West Africa by microscopic, immunological and molecular methods. A systematic search was conducted in PubMed and Google Scholar. The selection criteria included all studies conducted in West Africa reporting the presence of Rickettsia, Borrelia, Anaplasma, Ehrlichia, Bartonella, Coxiella burnetii, Theileria, Babesia, Hepatozoon and Crimean-Congo haemorrhagic fever viruses in humans, animals or ticks. Our intention is to raise awareness of tick-borne diseases amongst human and animal health workers in West Africa, and also physicians working with tourists who have travelled to the region.

4.
Pathogens ; 12(9)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37764889

RESUMO

Human infections that originate in animals are quite frequent and warrant further investigation [...].

5.
Genes (Basel) ; 14(5)2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-37239466

RESUMO

Zoonotic pathogens are responsible for most infectious diseases in humans, with rodents being important reservoir hosts for many of these microorganisms. Rodents, thus, pose a significant threat to public health. Previous studies in Senegal have shown that rodents harbour a diversity of microorganisms, including human pathogens. Our study aimed to monitor the prevalence of infectious agents in outdoor rodents, which can be the cause of epidemics. We screened 125 rodents (both native and expanding) from the Ferlo region, around Widou Thiengoly, for different microorganisms. Analysis, performed on rodent spleens, detected bacteria from the Anaplasmataceae family (20%), Borrelia spp. (10%), Bartonella spp. (24%) and Piroplasmida (2.4%). Prevalences were similar between native and the expanding (Gerbillus nigeriae) species, which has recently colonised the region. We identified Borrelia crocidurae, the agent responsible for tick-borne relapsing fever, which is endemic in Senegal. We also identified two other not-yet-described bacteria of the genera Bartonella and Ehrlichia that were previously reported in Senegalese rodents. Additionally, we found a potential new species, provisionally referred to here as Candidatus Anaplasma ferloense. This study highlights the diversity of infectious agents circulating in rodent populations and the importance of describing potential new species and evaluating their pathogenicity and zoonotic potential.


Assuntos
Anaplasmataceae , Bartonella , Piroplasmida , Animais , Humanos , Roedores , Senegal/epidemiologia , Bartonella/genética
6.
Microorganisms ; 11(4)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37110439

RESUMO

Coxiella burnetii, also known as the causal agent of Q fever, is a zoonotic pathogen infecting humans and several animal species. Here, we investigated the epidemiological context of C. burnetii from an area in the Hérault department in southern France, using the One Health paradigm. In total, 13 human cases of Q fever were diagnosed over the last three years in an area comprising four villages. Serological and molecular investigations conducted on the representative animal population, as well as wind data, indicated that some of the recent cases are likely to have originated from a sheepfold, which revealed bacterial contamination and a seroprevalence of 47.6%. However, the clear-cut origin of human cases cannot be ruled out in the absence of molecular data from the patients. Multi-spacer typing based on dual barcoding nanopore sequencing highlighted the occurrence of a new genotype of C. burnetii. In addition, the environmental contamination appeared to be widespread across a perimeter of 6 km due to local wind activity, according to the seroprevalence detected in dogs (12.6%) and horses (8.49%) in the surrounding populations. These findings were helpful in describing the extent of the exposed area and thus supporting the use of dogs and horses as valuable sentinel indicators for monitoring Q fever. The present data clearly highlighted that the epidemiological surveillance of Q fever should be reinforced and improved.

7.
Vet Res ; 53(1): 96, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36414994

RESUMO

Colistin is frequently used as a growth factor or treatment against infectious bacterial diseases in animals. The Veterinary Division of the European Medicines Agency (EMA) restricted colistin use as a second-line treatment to reduce colistin resistance. In 2020, 282 faecal samples were collected from chickens, cattle, sheep, goats, and pigs in the south of France. In order to track the emergence of mobilized colistin resistant (mcr) genes in pigs, 111 samples were re-collected in 2021 and included pig faeces, food, and water from the same location. All samples were cultured in a selective Lucie Bardet Jean-Marc Rolain (LBJMR) medium and colonies were identified using MALDI-TOF mass spectrometry and then antibiotic susceptibility tests were performed. PCR and Sanger sequencing were performed to screen for the presence of mcr genes. The selective culture revealed the presence of 397 bacteria corresponding to 35 different bacterial species including Gram-negative and Gram-positive. Pigs had the highest prevalence of colistin-resistant bacteria with an abundance of intrinsically colistin-resistant bacteria and from these samples one strain harbouring both mcr-1 and mcr-3 has been isolated. The second collection allowed us to identify 304 bacteria and revealed the spread of mcr-1 and mcr-3 in pigs. In the other samples, naturally, colistin-resistant bacteria were more frequent, nevertheless the mcr-1 variant was the most abundant gene found in chicken, sheep, and goat samples and one cattle sample was positive for the mcr-3 gene. Animals are potential reservoir of colistin-resistant bacteria which varies from one animal to another. Interventions and alternative options are required to reduce the emergence of colistin resistance and to avoid zoonotic transmissions.


Assuntos
Colistina , Proteínas de Escherichia coli , Animais , Suínos , Bovinos , Ovinos , Colistina/farmacologia , Gado , Farmacorresistência Bacteriana/genética , Escherichia coli/genética , Antibacterianos/farmacologia , Galinhas/microbiologia , Bactérias , Proteínas de Escherichia coli/genética
8.
Microorganisms ; 10(11)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36363770

RESUMO

This study used MALDI-TOF MS and molecular tools to identify tick species infesting camels from Tamanrasset in southern Algeria and to investigate their associated microorganisms. Ninety-one adult ticks were collected from nine camels and were morphologically identified as Hyalomma spp., Hyalomma dromedarii, Hyalomma excavatum, Hyalomma impeltatum and Hyalomma anatolicum. Next, the legs of all ticks were subjected to MALDI-TOF MS, and 88/91 specimens provided good-quality MS spectra. Our homemade MALDI-TOF MS arthropod spectra database was then updated with the new MS spectra of 14 specimens of molecularly confirmed species in this study. The spectra of the remaining tick specimens not included in the MS database were queried against the upgraded database. All 74 specimens were correctly identified by MALDI-TOF MS, with logarithmic score values ranging from 1.701 to 2.507, with median and mean values of 2.199 and 2.172 ± 0.169, respectively. One H. impeltatum and one H. dromedarii (2/91; 2.20%) tested positive by qPCR for Coxiella burnetii, the agent of Q fever. We also report the first detection of an Anaplasma sp. close to A. platys in H. dromedarii in Algeria and a potentially new Ehrlichia sp. in H. impeltatum.

9.
Pathogens ; 11(10)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36297164

RESUMO

Aujeszky's disease virus (ADV), also known as pseudorabies virus, causes an important neurological infection with a major economic and health impact on animal husbandry. Here, we serologically screened muscle fluid from wild boar (Sus scrofa) for the presence of anti-ADV antibodies. Animals were caught during two hunting seasons (2019−2020 and 2021−2022) from three areas in southeastern France known to be endemic with wild boar populations. A total of 30.33% of the 399 tested animals scored positive for anti-glycoprotein B antibodies directed against ADV using a commercial competitive ELISA test. A significant effect (p-value < 0.0001) of the geographical location and animal age on ADV seroprevalence was observed. The results of this study confirmed the importance of wild boar in the epidemiology of ADV in southeastern France.

10.
Pathogens ; 11(9)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36145454

RESUMO

Wild animals may act as efficient antimicrobial-resistance reservoirs and epidemiological links between humans, livestock, and natural environments. By using phenotypic and genotypic characterization, the present study highlighted the occurrence of an antimicrobial-resistant (i.e., amoxicillin, amoxicillin-clavulanic acid, cephalothin, and colistin) Enterobacter hormaechei subsp. steigerwaltii strain in wild boar (Sus scrofa) from France. The molecular analysis conducted showed non-synonymous mutations in the pmrA/pmrB and phoQ/phoP operons and the phoP/Q regulator mgrB gene, leading to colistin resistance. The present data highlight the need for continuous monitoring of multidrug-resistant bacteria in wild animals to limit the spread of these threatening pathogens.

11.
Transbound Emerg Dis ; 69(5): e3400-e3407, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35841263

RESUMO

In the French region of Brittany, mainly in the department of the Côtes d'Armor, during the first half of 2021, seropositivity for SARS-CoV-2 was detected in five wild mustelids out of 33 animals tested (15.6%). Anti-SARS-CoV-2 IgG was detected against at least four out of five recombinant viral proteins (S1 receptor binding domain, nucleocapsid, S1 subunit, S2 subunit and spike) in three pine martens (Martes martes) and in two badgers (Meles meles) using the automated western blot technique. An ELISA test also identified seropositive cases, although these did not align with western blot results. Although the 171 qPCRs carried out on samples from the 33 mustelids were all negative, these preliminary results from this observational study nevertheless bear witness to infections of unknown origin. The epidemiological surveillance of Covid-19 in wildlife must continue, in particular with effective serology tools.


Assuntos
COVID-19 , Mustelidae , Animais , Anticorpos Antivirais , COVID-19/epidemiologia , COVID-19/veterinária , Imunoglobulina G , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Proteínas Virais
12.
Pathogens ; 11(6)2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35745552

RESUMO

Background: Pets, especially cats and dogs, represent a great potential for zoonotic transmission, leading to major health problems. The purpose of this systematic review was to present the latest developments concerning colistin resistance through mcr genes in pets. The current study also highlights the health risks of the transmission of colistin resistance between pets and humans. Methods: We conducted a systematic review on mcr-positive bacteria in pets and studies reporting their zoonotic transmission to humans. Bibliographic research queries were performed on the following databases: Google Scholar, PubMed, Scopus, Microsoft Academic, and Web of Science. Articles of interest were selected using the PRISMA guideline principles. Results: The analyzed articles from the investigated databases described the presence of mcr gene variants in pets including mcr-1, mcr-2, mcr-3, mcr-4, mcr-5, mcr-8, mcr-9, and mcr-10. Among these articles, four studies reported potential zoonotic transmission of mcr genes between pets and humans. The epidemiological analysis revealed that dogs and cats can be colonized by mcr genes that are beginning to spread in different countries worldwide. Overall, reported articles on this subject highlight the high risk of zoonotic transmission of colistin resistance genes between pets and their owners. Conclusions: This review demonstrated the spread of mcr genes in pets and their transmission to humans, indicating the need for further measures to control this significant threat to public health. Therefore, we suggest here some strategies against this threat such as avoiding zoonotic transmission.

13.
Front Microbiol ; 13: 838392, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35369484

RESUMO

Introduction: The role of wildlife in the transmission of antimicrobial resistant (AMR) is suspected but scarcely reported in current studies. Therefore, we studied the dynamics and prevalence of antibiotic-resistant Enterobacterales in antibiotic-limited areas of Senegal. Materials and Methods: We collected fecal samples from monkeys and apes (N = 226) and non-fecal environmental samples (N = 113) from Senegal in 2015 and 2019. We grew the samples on selective media, subsequently isolated AMR Enterobacterales, and then sequenced their genomes. Results: We isolated 72 different Enterobacterales among which we obtained a resistance rate of 65% for colistin (N = 47/72) and 29% for third generation-cephalosporin (C3G) (29%, N = 21/72). Interestingly, almost 46% of our isolates, among Enterobacter sp., Citrobacter cronae and Klebsiella aerogenes, belong to 34 new STs. Moreover, the genes bla CTX-M-15, bla TEM1B , sul2, dfrA14, qnrs, aph(3''), aph(6), tetA, and tetR harbored within a transposon on the IncY plasmid of ST224 Escherichia coli were transferred and inserted into a ST10 E. coli phage coding region. Conclusion: Wildlife constitutes a rich, unexplored reservoir of natural microbial diversity, AMR genes and international resistant clones pathogenic in humans. The presence of a transposon that carries AMR genes is intriguing since no antibiotics are used in the non-human primates we studied.

14.
Vet Parasitol Reg Stud Reports ; 30: 100724, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35431062

RESUMO

Alveolar echinococcosis is a severe, potentially fatal, parasitic disease caused by ingestion of microscopic eggs of Echinococcus multilocularis. The lifecycle of the parasite is essentially sylvatic, and based on a prey-predator relationship between red foxes and small rodents. A westward expansion from the eastern historical focus has been reported in France, though the parasite has also been detected in the southern Alps. While the focus in the Auvergne region (central France) was described in the 1980s, the southern delimitation of the actual endemic area, especially in the south, was unknown in the absence of dedicated surveys. Red fox samples were collected from 2013 to 2020 in the framework of other transversal epidemiological studies in five sampling areas from southwestern and southeastern France. One hundred and seven intestines were analysed by SSCT, and 221 faecal samples from intestines were analysed by copro-qPCR. None of the 328 foxes exhibited E. multilocularis worms or DNA. Although the presence of E. multilocularis cannot be totally excluded in the departments from the study areas, the sample size tested argues for an absence of the parasite in these studied areas, which is in accordance with the currently known endemic situation in France. These new data are helpful in determining the southernmost limit of E. multilocularis distribution in France. The warm, dry Mediterranean climate in the southeastern areas is less favourable to the transmission of E. multilocularis and especially to the survival of eggs in the environment than the climate in the French Alps or Liguria (Italy) climate where the parasite is present. The intermediate area between the southwestern study areas and the historical focus of Auvergne, which is separated by around 150 km, will be investigated in the coming years. Moreover, an ongoing national surveillance programme on E. multilocularis in foxes is targeting French departements along the edge of the known endemic area both in the southeast and southwest. The data produced will supplement the results of this study, thus greatly helping to define the current distribution of E. multilocularis in France and to target prevention measures to reduce human exposure.


Assuntos
Equinococose , Echinococcus multilocularis , Parasitos , Animais , Equinococose/epidemiologia , Equinococose/parasitologia , Equinococose/veterinária , Raposas/parasitologia , França/epidemiologia
15.
Animals (Basel) ; 12(5)2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35268202

RESUMO

BACKGROUND: Pets are the closest animals to humans with a considerable risk of zoonotic transmission. This study aimed to screen colistin-resistant bacteria from stools of dogs and cats from Marseille, France. Screening of mcr genes in pets has never been reported in France. METHODS: Fecal samples (n = 157) were cultivated on the selective Lucie-Bardet Jean-Marc-Rolain medium (LBJMR). Bacteria were identified using Microflex LS MALDI-TOF. The antibiotic resistance phenotype was investigated for several antibiotics (ß-lactams, aminoside, cephalosporine, tetracycline, and sulfonamide). PCR techniques were performed to detect mcr genes. RESULTS: A total of 218 bacteria were identified. For cats, intrinsically colistin-resistant bacteria were significantly higher than mcr-1 gene carriers (n = 4). Dogs had more bacteria with the mcr-1 gene (n = 10). Furthermore, cats had a high prevalence of Gram-positive bacteria (GPB), whereas dogs had GNB equal to GPB. The diversity of identified bacteria was due to the constitution of the pets' microorganisms. Even though colistin use is monitored in France, pets harbor various colistin-resistant bacteria. Additionally, in this geographical area, bacteria bearing mcr-1 gene from dogs and cats were detected for the first time. CONCLUSIONS: The current study opens a new perspective: the spread of colistin resistance is independent of colistin use. What are the most factors related to the emergence of colistin resistance? The surveillance of pets must be considered a priority to avoid the spread of mcr genes. It is important to know the contribution that pets make to the pool of multidrug-resistant mcr-1-containing bacteria.

16.
Front Cell Infect Microbiol ; 12: 834388, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35310843

RESUMO

Pediculus humanus is an obligate bloodsucking parasite of humans that has two ecotypes, the head louse and the body louse, which share an intimate history of coevolution with their human host. In the present work, we obtained and analysed head and body lice collected from Mbuti pygmies living in the Orientale province of the Democratic Republic of the Congo. Cytochrome b DNA analysis was performed in order to type the six known lice clades (A, D, B, F, C and E). The results revealed the presence of two mitochondrial clades. Clade D was the most frequent (61.7% of 47), followed by clade A (38.3% of 47). Sixteen haplotypes were found in 47 samples, of which thirteen were novel haplotypes, indicating an unusually high genetic diversity that closely mirrors the diversity of their hosts. Moreover, we report for the first time the presence of the DNA of R. felis in three (6.4% of 47) head and body lice belonging to both clades A and D. Additional studies are needed to clarify whether the Pediculus lice can indeed transmit this emerging zoonotic bacterium to their human hosts.


Assuntos
Pediculus , Rickettsia felis , Animais , República Democrática do Congo , Variação Genética , Humanos , Pediculus/genética , Filogenia
17.
Microorganisms ; 10(3)2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35336065

RESUMO

Bartonellae are bacteria associated with mammals and their ectoparasites. Rodents often host different species of Bartonella. The aim of this study was to investigate the presence of Bartonella spp. in African giant pouched rats (Cricetomys gambianus) and their ectoparasites in Dakar, Senegal. In 2012, 20 rats were caught, and their fleas were identified. DNA was extracted from 170 selected fleas and qPCR was carried out to detect Bartonella spp. Subsequently, a Bartonella culture was performed from the rat blood samples and the isolated strains (16S rRNA, rpoB, ftsZ and ITS3) were genotyped. A total of 1117 fleas were collected from 19 rats and identified as Xenopsylla cheopis, the tropical rat flea. Bartonella DNA was detected in 148 of 170 selected fleas (87.1%). In addition, Bartonella strains were isolated from the blood of 17 rats (85%). According to Bartonella gene-sequence-based criteria for species definition, the isolated strains were identified as B. massiliensis (four strains) and two potential new species related to the zoonotic B. elizabethae. In this paper, these potentially new species are provisionally called Candidatus Bartonella militaris (11 strains) and Candidatus Bartonella affinis (two strains) until their description has been completed. Cricetomys gambianus and its fleas could constitute a public health risk in Dakar due to the high prevalence of Bartonella infection reported.

18.
J Glob Antimicrob Resist ; 28: 174-179, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35085790

RESUMO

OBJECTIVES: Colistin is considered a last-resort antibiotic against carbapenem-resistant isolates. Currently, this antibiotic is facing the emergence of mobilised colistin resistance (mcr) genes, which confer colistin resistance. This study conducted genomic characterisation of an atypical multidrug-resistant Escherichia coli harbouring two mcr genes in France. Samples collected from a pig farm in Avignon (Vaucluse department) were subjected to molecular screening targeting mcr variants. METHODS: Samples were cultured on selective Lucie-Bardet-Jean-Marc-Rolain medium. Growing bacteria were identified using MALDI-TOF, followed by antibiotic susceptibility testing. Whole-genome sequencing and bioinformatic genome analysis were performed. RESULTS: Selective culture of stools revealed the presence of an E. coli strain named Q4552 harbouring mcr-1.1 and mcr-3.5 genes, which is also resistant to 14 antibiotics. Genome sequencing and assembly yielded a complete and circular chromosome and eight different plasmids. Sequence analysis demonstrated an integration of a mobile genetic element carrying mcr-1.1 in the chromosome, whereas mcr-3.5 was in the plasmid and its resistome was composed of 22 resistance genes. The Q4552 strain was identified as an ST-843 clone that belonged to the clonal complex Cplx-568 and is the only ST type of this cplx-568 that has been isolated from animals, humans, and the environment. CONCLUSION: We report the first co-occurrence of mcr-1 and mcr-3 genes in France from a pathogenic E. coli isolated from a pig. Because this clone (ST-843) has been reported in zoonotic transmissions, programs to monitor the bacterium are urgently required to avoid its spread and zoonotic transmission to humans.


Assuntos
Infecções por Escherichia coli , Proteínas de Escherichia coli , Animais , Antibacterianos/farmacologia , Colistina/farmacologia , Farmacorresistência Bacteriana , Escherichia coli , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária , Proteínas de Escherichia coli/genética , Genômica , Suínos
19.
Int J Mol Sci ; 24(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36613478

RESUMO

The genus Anaplasma (Anaplasmataceae, Rickettsiales) includes tick-transmitted bacterial species of importance to both veterinary and human medicine. Apart from the traditionally recognized six Anaplasma species (A. phagocytophilum, A. platys, A. bovis, A. ovis, A. centrale, A. marginale), novel strains and candidate species, also of relevance to veterinary and human medicine, are emerging worldwide. Although species related to the zoonotic A. platys and A. phagocytophilum have been reported in several African and European Mediterranean countries, data on the presence of these species in sub-Saharan countries are still lacking. This manuscript reports the investigation of Anaplasma strains related to zoonotic species in ruminants in Senegal by combining different molecular tests and phylogenetic approaches. The results demonstrated a recent introduction of Candidatus (Ca) Anaplasma turritanum, a species related to the pathogenic A. platys, possibly originating by founder effect. Further, novel undetected strains related to Candidatus (Ca) Anaplasma cinensis were detected in cattle. Based on groEL and gltA molecular comparisons, we propose including these latter strains into the Candidatus (Ca) Anaplasma africanum species. Finally, we also report the emergence of Candidatus (Ca) A. boleense in Senegal. Collectively, results confirm that Anaplasma species diversity is greater than expected and should be further investigated, and that Anaplasma routine diagnostic procedures and epidemiological surveillance should take into account specificity issues raised by the presence of these novel strains, suggesting the use of a One Health approach for the management of Anaplasmataceae in sub-Saharan Africa.


Assuntos
Anaplasma , Anaplasmataceae , Humanos , Animais , Bovinos , Ovinos , Anaplasma/genética , Filogenia , Senegal/epidemiologia , Anaplasmataceae/genética , Ruminantes , RNA Ribossômico 16S
20.
Transbound Emerg Dis ; 69(4): e823-e830, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34706153

RESUMO

Since the start of the coronavirus disease of 2019 (COVID-19) pandemic, several episodes of human-to-animal severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission have been described in different countries. The role of pets, especially domestic dogs, in the COVID-19 epidemiology is highly questionable and needs further investigation. In this study, we report a case of COVID-19 in a French dog living in close contact with its owners who were COVID-19 patients. The dog presented rhinitis and was sampled 1 week after its owners (a man and a woman) were tested positive for COVID-19. The nasal swabs for the dog tested remained positive for SARS-CoV-2 by reverse transcription quantitative real-time PCR (RT-qPCR) 1 month following the first diagnosis. Specific anti-SARS-CoV-2 antibodies were detectable 12 days after the first diagnosis and persisted for at least 5 months as tested using enzyme-linked immunoassay (ELISA) and automated western blotting. The whole-genome sequences from the dog and its owners were 99%-100% identical (with the man and the woman's sequences, respectively) and matched the B.1.160 variant of concern (Marseille-4 variant), the most widespread in France at the time the dog was infected. This study documents the first detection of B.1.160 in pets (a dog) in France, and the first canine genome recovery of the B.1.160 variant of global concern. Moreover, given the enhanced infectivity and transmissibility of the Marseille-4 variant for humans, this case also highlights the risk that pets may potentially play a significant role in SARS-CoV-2 outbreaks and may transmit the infection to humans. We have evidence of human-to-dog transmission of the Marseille-4 variant since the owners were first to be infected. Finally, owners and veterinarians must be vigilent for canine COVID-19 when dogs are presented with respiratory clinical signs.


Assuntos
COVID-19 , Doenças do Cão , Animais , Anticorpos Antivirais , COVID-19/diagnóstico , COVID-19/epidemiologia , COVID-19/veterinária , Doenças do Cão/diagnóstico , Doenças do Cão/epidemiologia , Cães , Feminino , Humanos , Pandemias/veterinária , Reação em Cadeia da Polimerase em Tempo Real/veterinária , SARS-CoV-2/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...