Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 24(11): 3315-3322, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38452251

RESUMO

Accessing mid-infrared radiation is of great importance for a range of applications, including thermal imaging, sensing, and radiative cooling. Here, we study light interaction with hexagonal boron nitride (hBN) nanocavities and reveal strong and tunable resonances across its hyperbolic transition. In addition to conventional phonon-polariton excitations, we demonstrate that the high refractive index of hexagonal boron nitride outside the Reststrahlen band allows enhanced light-matter interactions in deep subwavelength (<λ/15) nanostructures across a broad 7-8 µm range. Emergence and interplay of Fabry-Perot and Mie-like resonances are examined experimentally and theoretically. Near-unity absorption and high quality (Q ≥ 80) resonance interaction in the vicinity of the hBN transverse optical phonon is further observed. Our study provides avenues to design highly efficient and ultracompact structures for controlling mid-infrared radiation and accessing strong light-matter interactions with hBN.

2.
Opt Express ; 31(9): 14278-14285, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37157295

RESUMO

The unidirectional flow of electrons that takes place in a conventional electronic diode has been a cornerstone in the development of the field of electronics. Achieving an equivalent one-way flow for light has been a long-standing problem. While a number of concepts have been suggested recently, attaining a unidirectional flow of light in a two-port system (e.g., a waveguiding configuration) is still challenging. Here, we present what we believe to be a novel approach for breaking reciprocity and achieving one-way flow of light. Taking a nanoplasmonic waveguide as an example, we show that a combination of time-dependent interband optical transitions, when in systems exhibiting a backward wave flow, can yield light transmission strictly in one direction. In our configuration, the energy flow is unidirectional: light is fully reflected in one direction of propagation, and is unperturbed in the other. The concept can find use in a range of applications including communications, smart windows, thermal radiation management, and solar energy harvesting.

3.
Nano Lett ; 22(15): 6254-6261, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35867898

RESUMO

Layered van der Waals materials allow creating unique atomic-void channels with subnanometer dimensions. Coupling light into these channels may further advance sensing, quantum information, and single molecule chemistries. Here, we examine theoretically limits of light guiding in atomic-void channels and show that van der Waals materials exhibiting strong resonances, excitonic and polaritonic, are ideally suited for deeply subwavelength light guiding. We predict that excitonic transition metal dichalcogenides can squeeze >70% of optical power in just <λ/100 thick channel in the visible and near-infrared. We also show that polariton resonances of hexagonal boron nitride allow deeply subwavelength (<λ/500) guiding in the mid-infrared. We further reveal effects of natural material anisotropy and discuss the influence of losses. Such van der Waals channel waveguides while offering extreme optical confinement exhibit significantly lower loss compared to plasmonic counterparts, thus paving the way to low-loss and deeply subwavelength optics.

4.
Nano Lett ; 22(3): 1108-1114, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35099194

RESUMO

Space exploration is of paramount importance to advancing fundamental science and the global economy. However, today's space missions are limited by existing propulsion technologies. Here, we examine the use of laser-driven light sailing for agile Earth orbital maneuvering and for fast-transit exploration of the solar system and interstellar medium. We show that laser propulsion becomes practical at laser powers ≥100 kW and laser array sizes ∼1 m, which are feasible in the near term. Our analysis indicates that lightweight (1-100 g) wafer-scale (∼10 cm) spacecraft may be propelled by lasers to orbits that are beyond the reach of current systems. We discuss material requirements and photonic designs and introduce new figures of merit. We show that lightsails made of silicon nitride and boron nitride are particularly well suited for the discussed applications. Our architecture may pave the way to ubiquitous Earth orbital networks and fast-transit low-cost missions across the solar system.

5.
Nat Nanotechnol ; 17(2): 182-189, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34857931

RESUMO

Two-dimensional (2D) crystals have renewed opportunities in design and assembly of artificial lattices without the constraints of epitaxy. However, the lack of thickness control in exfoliated van der Waals (vdW) layers prevents realization of repeat units with high fidelity. Recent availability of uniform, wafer-scale samples permits engineering of both electronic and optical dispersions in stacks of disparate 2D layers with multiple repeating units. Here we present optical dispersion engineering in a superlattice structure comprising alternating layers of 2D excitonic chalcogenides and dielectric insulators. By carefully designing the unit cell parameters, we demonstrate greater than 90% narrow band absorption in less than 4 nm of active layer excitonic absorber medium at room temperature, concurrently with enhanced photoluminescence in square-centimetre samples. These superlattices show evidence of strong light-matter coupling and exciton-polariton formation with geometry-tuneable coupling constants. Our results demonstrate proof of concept structures with engineered optical properties and pave the way for a broad class of scalable, designer optical metamaterials from atomically thin layers.

6.
Nat Commun ; 11(1): 3552, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32669550

RESUMO

Van der Waals materials and heterostructures that manifest strongly bound exciton states at room temperature also exhibit emergent physical phenomena and are of great promise for optoelectronic applications. Here, we demonstrate that nanostructured, multilayer transition metal dichalcogenides (TMDCs) by themselves provide an ideal platform for excitation and control of excitonic modes, paving the way to exciton-photonics. Hence, we show that by patterning the TMDCs into nanoresonators, strong dispersion and avoided crossing of exciton, cavity photons and plasmon polaritons with effective separation energy exceeding 410 meV can be controlled with great precision. We further observe that inherently strong TMDC exciton absorption resonances may be completely suppressed due to excitation of hybrid light-matter states and their interference. Our work paves the way to the next generation of integrated exciton optoelectronic nano-devices and applications in light generation, computing, and sensing.

7.
Nat Mater ; 17(12): 1164, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30315211

RESUMO

In the version of this Perspective originally published, Fig. 1 was missing the following credit line from the caption: 'Background image from ESA/Hubble (A. Fujii).' This has now been corrected in the online versions of the Perspective.

8.
Nat Mater ; 17(10): 943, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30115965

RESUMO

In the version of this Perspective originally published, the titles of the references were missing; all versions have now been amended to include them.

9.
Nat Commun ; 9(1): 3394, 2018 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-30140064

RESUMO

Harnessing photoexcited "hot" carriers in metallic nanostructures could define a new phase of non-equilibrium optoelectronics for photodetection and photocatalysis. Surface plasmons are considered pivotal for enabling efficient operation of hot carrier devices. Clarifying the fundamental role of plasmon excitation is therefore critical for exploiting their full potential. Here, we measure the internal quantum efficiency in photoexcited gold (Au)-gallium nitride (GaN) Schottky diodes to elucidate and quantify the distinct roles of surface plasmon excitation, hot carrier transport, and carrier injection in device performance. We show that plasmon excitation does not influence the electronic processes occurring within the hot carrier device. Instead, the metal band structure and carrier transport processes dictate the observed hot carrier photocurrent distribution. The excellent agreement with parameter-free calculations indicates that photoexcited electrons generated in ultra-thin Au nanostructures impinge ballistically on the Au-GaN interface, suggesting the possibility for hot carrier collection without substantial energy losses via thermalization.

11.
Nat Commun ; 8(1): 1631, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29158507

RESUMO

Emission control of colloidal quantum dots (QDs) is a cornerstone of modern high-quality lighting and display technologies. Dynamic emission control of colloidal QDs in an optoelectronic device is usually achieved by changing the optical pump intensity or injection current density. Here we propose and demonstrate a distinctly different mechanism for the temporal modulation of QD emission intensity at constant optical pumping rate. Our mechanism is based on the electrically controlled modulation of the local density of optical states (LDOS) at the position of the QDs, resulting in the modulation of the QD spontaneous emission rate, far-field emission intensity, and quantum yield. We manipulate the LDOS via field effect-induced optical permittivity modulation of an ultrathin titanium nitride (TiN) film, which is incorporated in a gated TiN/SiO2/Ag plasmonic heterostructure. The demonstrated electrical control of the colloidal QD emission provides a new approach for modulating intensity of light in displays and other optoelectronics.

12.
ACS Nano ; 11(7): 7230-7240, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28590713

RESUMO

We report experimental measurements for ultrathin (<15 nm) van der Waals heterostructures exhibiting external quantum efficiencies exceeding 50% and show that these structures can achieve experimental absorbance >90%. By coupling electromagnetic simulations and experimental measurements, we show that pn WSe2/MoS2 heterojunctions with vertical carrier collection can have internal photocarrier collection efficiencies exceeding 70%.

13.
Nano Lett ; 17(1): 255-260, 2017 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-27936794

RESUMO

We report mid-infrared spectroscopy measurements of ultrathin, electrostatically gated (Bi1-xSbx)2Te3 topological insulator films in which we observe several percent modulation of transmittance and reflectance as gating shifts the Fermi level. Infrared transmittance measurements of gated films were enabled by use of an epitaxial lift-off method for large-area transfer of topological insulator films from infrared-absorbing SrTiO3 growth substrates to thermal oxidized silicon substrates. We combine these optical experiments with transport measurements and angle-resolved photoemission spectroscopy to identify the observed spectral modulation as a gate-driven transfer of spectral weight between both bulk and 2D topological surface channels and interband and intraband channels. We develop a model for the complex permittivity of gated (Bi1-xSbx)2Te3 and find a good match to our experimental data. These results open the path for layered topological insulator materials as a new candidate for tunable, ultrathin infrared optics and highlight the possibility of switching topological optoelectronic phenomena between bulk and spin-polarized surface regimes.

14.
Nano Lett ; 16(9): 5482-7, 2016 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-27563733

RESUMO

We demonstrate near-unity, broadband absorbing optoelectronic devices using sub-15 nm thick transition metal dichalcogenides (TMDCs) of molybdenum and tungsten as van der Waals semiconductor active layers. Specifically, we report that near-unity light absorption is possible in extremely thin (<15 nm) van der Waals semiconductor structures by coupling to strongly damped optical modes of semiconductor/metal heterostructures. We further fabricate Schottky junction devices using these highly absorbing heterostructures and characterize their optoelectronic performance. Our work addresses one of the key criteria to enable TMDCs as potential candidates to achieve high optoelectronic efficiency.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...