Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 20(4): 1089-100, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24115585

RESUMO

Permafrost thaw in the Arctic driven by climate change is mobilizing ancient terrigenous organic carbon (OC) into fluvial networks. Understanding the controls on metabolism of this OC is imperative for assessing its role with respect to climate feedbacks. In this study, we examined the effect of inorganic nutrient supply and dissolved organic matter (DOM) composition on aquatic extracellular enzyme activities (EEAs) in waters draining the Kolyma River Basin (Siberia), including permafrost-derived OC. Reducing the phenolic content of the DOM pool resulted in dramatic increases in hydrolase EEAs (e.g., phosphatase activity increased >28-fold) supporting the idea that high concentrations of polyphenolic compounds in DOM (e.g., plant structural tissues) inhibit enzyme synthesis or activity, limiting OC degradation. EEAs were significantly more responsive to inorganic nutrient additions only after phenolic inhibition was experimentally removed. In controlled mixtures of modern OC and thawed permafrost endmember OC sources, respiration rates per unit dissolved OC were 1.3-1.6 times higher in waters containing ancient carbon, suggesting that permafrost-derived OC was more available for microbial mineralization. In addition, waters containing ancient permafrost-derived OC supported elevated phosphatase and glucosidase activities. Based on these combined results, we propose that both composition and nutrient availability regulate DOM metabolism in Arctic aquatic ecosystems. Our empirical findings are incorporated into a mechanistic conceptual model highlighting two key enzymatic processes in the mineralization of riverine OM: (i) the role of phenol oxidase activity in reducing inhibitory phenolic compounds and (ii) the role of phosphatase in mobilizing organic P. Permafrost-derived DOM degradation was less constrained by this initial 'phenolic-OM' inhibition; thus, informing reports of high biological availability of ancient, permafrost-derived DOM with clear ramifications for its metabolism in fluvial networks and feedbacks to climate.


Assuntos
Carbono/análise , Carbono/metabolismo , Enzimas/metabolismo , Rios , Regiões Árticas , Análise da Demanda Biológica de Oxigênio , Ecossistema , Enzimas/química , Glucosidases/metabolismo , Monofenol Mono-Oxigenase/química , Monofenol Mono-Oxigenase/metabolismo , Nitrogênio/análise , Monoéster Fosfórico Hidrolases/metabolismo , Polifenóis/análise , Polifenóis/metabolismo , Sibéria
2.
J Virol ; 80(24): 12229-35, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17035314

RESUMO

Influenza A virus infects a large proportion of the human population annually, sometimes leading to the deaths of millions. The biotic cycles of infection are well characterized in the literature, including in studies of populations of humans, poultry, swine, and migratory waterfowl. However, there are few studies of abiotic reservoirs for this virus. Here, we report the preservation of influenza A virus genes in ice and water from high-latitude lakes that are visited by large numbers of migratory birds. The lakes are along the migratory flight paths of birds flying into Asia, North America, Europe, and Africa. The data suggest that influenza A virus, deposited as the birds begin their autumn migration, can be preserved in lake ice. As birds return in the spring, the ice melts, releasing the viruses. Therefore, temporal gene flow is facilitated between the viruses shed during the previous year and the viruses newly acquired by birds during winter months spent in the south. Above the Arctic Circle, the cycles of entrapment in the ice and release by melting can be variable in length, because some ice persists for several years, decades, or longer. This type of temporal gene flow might be a feature common to viruses that can survive entrapment in environmental ice and snow.


Assuntos
Água Doce/virologia , Camada de Gelo/virologia , Vírus da Influenza A/genética , Filogenia , RNA/genética , Microbiologia da Água , Sequência de Bases , Análise por Conglomerados , Primers do DNA , Dados de Sequência Molecular , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Estações do Ano , Análise de Sequência de DNA , Sibéria
3.
Science ; 306(5701): 1561-5, 2004 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-15567864

RESUMO

The widespread extinctions of large mammals at the end of the Pleistocene epoch have often been attributed to the depredations of humans; here we present genetic evidence that questions this assumption. We used ancient DNA and Bayesian techniques to reconstruct a detailed genetic history of bison throughout the late Pleistocene and Holocene epochs. Our analyses depict a large diverse population living throughout Beringia until around 37,000 years before the present, when the population's genetic diversity began to decline dramatically. The timing of this decline correlates with environmental changes associated with the onset of the last glacial cycle, whereas archaeological evidence does not support the presence of large populations of humans in Eastern Beringia until more than 15,000 years later.


Assuntos
Bison , Clima , Fósseis , Alaska , Animais , Teorema de Bayes , Bison/classificação , Bison/genética , Canadá , China , DNA Mitocondrial/genética , Meio Ambiente , Variação Genética , Genética Populacional , Atividades Humanas , Humanos , América do Norte , Filogenia , Dinâmica Populacional , Análise de Sequência de DNA , Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...