Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 19(10)2018 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-30274357

RESUMO

Tick-borne encephalitis (TBE) is a widespread, dangerous infection. Unfortunately, all attempts to create safe anti-TBE subunit vaccines are still unsuccessful due to their low immunogenicity. The goal of the present work was to investigate the immunogenicity of a recombinant chimeric protein created by the fusion of the EIII protein, comprising domain III and a stem region of the tick-borne encephalitis virus (TBEV) E protein, and the OmpF porin of Yersinia pseudotuberculosis (OmpF-EIII). Adjuvanted antigen delivery systems, the tubular immunostimulating complexes (TI-complexes) based on the monogalactosyldiacylglycerol from different marine macrophytes, were used to enhance the immunogenicity of OmpF-EIII. Also, the chimeric protein incorporated into the most effective TI-complex was used to study its protective activity. The content of anti-OmpF-EIII antibodies was estimated in mice blood serum by enzyme-linked immunosorbent assay (ELISA). To study protective activity, previously immunized mice were infected with TBEV strain Dal'negorsk (GenBank ID: FJ402886). The animal survival was monitored daily for 21 days. OmpF-EIII incorporated into the TI-complexes induced about a 30⁻60- and 5⁻10-fold increase in the production of anti-OmpF-EIII and anti-EIII antibodies, respectively, in comparison with the effect of an individual OmpF-EIII. The most effective vaccine construction provided 60% protection. Despite the dramatic effect on the specific antibody titer, the studied TI-complex did not provide a statistically significant increase in the protection of OmpF-EIII protein. However, our results provide the basis of the future search for approaches to design and optimize the anti-TBEV vaccine based on the OmpF-EIII protein.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos/metabolismo , Porinas/química , Proteínas Recombinantes de Fusão/imunologia , Proteínas do Envelope Viral/química , Yersinia pseudotuberculosis/metabolismo , Animais , Anticorpos/sangue , Antígenos/imunologia , Galactolipídeos/metabolismo , Imunização , Camundongos Endogâmicos BALB C , Domínios Proteicos
2.
Biomolecules ; 8(3)2018 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-30149603

RESUMO

Domain III (DIII) of the tick-borne encephalitis virus (TBEV) protein E contains epitopes, which induce antibodies capable of neutralizing the virus. To enhance the immunogenicity of this protein, which has a low molecular weight, the aim of the present work was to express, isolate, and characterize a chimeric protein based on the fusion of the bacterial chaperone HSP70 of Yersinia pseudotuberculosis and EIII (DIII + stem) as a prospective antigen for an adjuvanted delivery system, the tubular immunostimulating complex (TI-complex). The chimeric construction was obtained using pET-40b(+) vector by ligating the respective genes. The resulting plasmid was transformed into DE3 cells for the heterologous expression of the chimeric protein, which was purified by immobilized metal affinity chromatography (IMAC). ELISA, differential scanning calorimetry, intrinsic fluorescence, and computational analysis were applied for the characterization of the immunogenicity and conformation of the chimeric protein. Mice immunization showed that the chimeric protein induced twice the number of anti-EIII antibodies in comparison with EIII alone. In turn, the incorporation of the HSP70/EIII chimeric protein in the TI-complex resulted in a twofold increase in its immunogenicity. The formation of this vaccine construction was accompanied by significant conformational changes in the chimeric protein. Using HSP70 in the content of the chimeric protein represents an efficient means for presenting the main antigenic domain of the TBEV envelope protein to the immune system, whereas the incorporation of this chimeric protein into the TI-complex further contributes to the development of a stronger immune response against the TBEV infection.


Assuntos
Antígenos/imunologia , Vírus da Encefalite Transmitidos por Carrapatos , Proteínas de Choque Térmico HSP70/genética , ISCOMs/imunologia , Proteínas Recombinantes de Fusão/imunologia , Proteínas do Envelope Viral/química , Yersinia pseudotuberculosis , Animais , Antígenos/genética , Masculino , Camundongos , Domínios Proteicos , Proteínas Recombinantes de Fusão/genética
3.
Interv Med Appl Sci ; 9(3): 168-177, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29201443

RESUMO

PURPOSE: The purpose of this paper is to describe the research results of the morphological structure of white laboratory rats' tongue at the macro-, micro-, and ultrastructural levels by scanning, light, and transmission electron microscopy. RESULTS: Our results show that the tongue of these rats has a number of unique morphological features that are different from the tongue of other rodents consequently to allow identifying their species-specific features. CONCLUSIONS: Our findings have shown the features of the tongue structure of white laboratory rats at micro-, macro-, and ultrascopic levels. The data analysis revealed that mucous membrane of the tongue contains a large number of papillae, such as fungiform, filiform, foliate, vallate, and multifilamentary papillae. Each has a different shape, size, and location. The tongue's morphological feature consists of three types of filiform papillae, well-developed foliate and multifilamentary papillae, as well as one large and similar smaller circumvallate papillae. The muscle of the tongue contains a large number of mitochondria of different shapes and sizes. However, we have received data for a complete picture of structure of this organ that will be useful in further experimental and morphological studies of the white laboratory rats.

4.
Int J Mol Sci ; 18(9)2017 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-28869526

RESUMO

The HA1 subunit of the influenza virus hemagglutinin (HA) is a valuable antigen for the development of vaccines against flu due to the availability of most antigenic sites which are conformational. Therefore, a novel adjuvanted antigen delivery system, tubular immunostimulating complexes (TI-complexes) comprising monogalactosyldiacylglycerol (MGDG) from different marine macrophytes as a lipid matrix for an antigen, was applied to enhance the immunogenicity of recombinant HA1 of influenza A H1N1 and to study the relation between its immunogenicity and conformation. The content of anti-HA1 antibodies and cytokines was estimated by ELISA after the immunization of mice with HA1 alone, and HA1 was incorporated in TI-complexes based on different MGDGs isolated from green algae Ulva lactuca, brown algae Sargassum pallidum, and seagrass Zostera marina. Conformational changes of HA1 were estimated by differential scanning calorimetry and intrinsic fluorescence. It was shown that the adjuvant activity of TI-complexes depends on the microviscosity of MGDGs, which differently influence the conformation of HA1. The highest production of anti-HA1 antibodies (compared with the control) was induced by HA1 incorporated in a TI-complex based on MGDG from S. pallidum, which provided the relaxation of the spatial structure and, likely, the proper presentation of the antigen to immunocompetent cells.


Assuntos
Antígenos Virais/química , Antígenos Virais/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Adjuvantes Imunológicos/química , Animais , Anticorpos Antivirais/imunologia , Varredura Diferencial de Calorimetria , Citocinas/metabolismo , Galactolipídeos/química , Galactolipídeos/farmacologia , Vacinas contra Influenza/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Conformação Proteica/efeitos dos fármacos , Desnaturação Proteica
5.
Protein Pept Lett ; 24(10): 974-981, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28741465

RESUMO

BACKGROUND: Tick-borne encephalitis poses a serious public health threat in the endemic regions. The disease treatment is restricted to symptomatic therapy, so great expectations are in the development of the prophylactic and therapeutic vaccines. The domain III of E protein of the tickborne encephalitis virus is the main antigenic domain which includes virus-specific epitopes recognized by neutralizing antibodies. OBJECTIVES: The main objective of this study was to design, express, isolate and characterize the chimeric protein based on the fusion of domain III of E protein of the tick-borne encephalitis virus and bacterial porin OmpF from Yersinia pseudotuberculosis. METHODS: The chimeric gene was obtained by the PCR based fusion method from two fragments containing overlapping linker sequences. Resulting plasmids were transformed into BL21(DE3) pLysS electrocompetent cells for subsequent heterologous protein expression. All recombinant proteins were purified using immobilized metal affinity chromatography under denaturing conditions. The identity of the chimeric protein was confirmed by MALDI-TOF mass spectrometry and immunoblot analysis. The content of antibodies against the EIII protein was estimated in mice blood serum by ELISA. RESULTS: The bacterial partner protein was used for decreasing toxicity and increasing immunogenicity of antigen. The chimeric protein was successfully expressed by the Escherichia coli cells. The purified protein was recognized with immunoblots by anti-E protein of tick-borne encephalitis virus monoclonal antibodies. Furthermore, the protein was able to elicit antibody response against domain III of E protein in immunized mice. CONCLUSION: The newly obtained chimeric antigen could be valuable for the development of the preventing tick-borne encephalitis subunit vaccines.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos/química , Porinas/química , Proteínas do Envelope Viral/química , Yersinia pseudotuberculosis/química , Animais , Anticorpos Antivirais/sangue , Feminino , Flavivirus/química , Camundongos Endogâmicos BALB C , Porinas/imunologia , Domínios Proteicos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Vacinas Virais/imunologia
6.
Biochimie ; 123: 103-9, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26853818

RESUMO

Differences in the distribution of individual phospholipids between the inner (IM) and outer membranes (OM) of gram-negative bacteria have been detected in mesophilic Escherichia, Erwinia and Salmonella species but have never been investigated in the psychrotrophic Yersinia genus. Therefore, the influence of an elevated growth temperature and heat shock on the phospholipid and fatty acid (FA) compositions of the fractionated Yersinia pseudotuberculosis envelope was investigated. The shift of the growth temperature from 8 °C to 37 °C to mimic the switch from saprophytic to parasitic growth of this bacteria and the exposure of the cells to heat shock, which was induced by a sharp increase in the temperature from 8 °C to 45 °C, increased the lysophosphatidylethanolamine content from zero and 1% to 6% and 10% in the IM and OM, respectively. These changes were accompanied by a decrease in the phosphatidylethanolamine (PE) content and a drastic increase (up to 3-fold higher) in the phosphatidylglycerol (PG) level in the OM of the bacteria, which increases the net negative charge of the cell envelope. The levels of the predominant saturated palmitic (16:0) and cyclopropane FAs were approximately 1.5- and 7.5-fold higher, respectively, but the content of the predominant unsaturated palmitoleic (16:1n-7) and cis-vaccenic (18:1n-7) FAs was approximately 10-30-fold lower in both membranes that were isolated from the cells grown at elevated temperatures. Due to these changes, reflecting the process of "homeoviscous adaptation", the ratio between the unsaturated and saturated FAs decreased but remained higher in the IM than that in the OM. Simultaneously, no significant changes were observed in the FA composition of cells subjected to heat shock, demonstrating a difference between the responses of the heat-shocked and heat-adapted Y. pseudotuberculosis. The unique ability of Y. pseudotuberculosis to reciprocally regulate the ratio of anionic PG and net neutral PE and therefore adjust the negative charge of the OM may be a common strategy used by pathogenic bacteria to promote the barrier function of the OM.


Assuntos
Resposta ao Choque Térmico , Temperatura Alta , Lipídeos de Membrana/metabolismo , Yersinia pseudotuberculosis/metabolismo
7.
Protein Pept Lett ; 22(12): 1060-5, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26349609

RESUMO

Lysophosphatidyletnolamine (LPE) is one of enigmatic lipids of bacteria. It is generated from major membrane lipid - phosphatidylethanolamine at severe changes of the bacterial growth conditions. Accumulation of this phospholipid in cells of Gram-negative enterobacterium Yersinia pseudotuberculosis results in the enhanced thermostability of OmpF-like porin (YOmpF) from the same bacteria. The respective integral conformational rearrangements may disturb the channel permeability of protein under stress conditions. However, role of fatty acid composition of LPE in this effect remained unclear. Present work demonstrated that the level of unsaturated LPE is 3.5 times higher than saturated one in total LPE of bacterial cells exposed to stress (phenol treatment). Unsaturated 1-oleoyl-2-hydroxy-sn-glycero-3-phosphoethanolamine (MOPE) and saturated LPE 1-palmitoyl-2- hydroxy-sn-glycero-3-phosphoethanolamine (MPPE) oppositely affect the conformation of YOmpF. MOPE increases the protein thermal stability due to more dense packing of monomers in porin and preserves its trimeric form at elevated temperature, while MPPE weakens the contact between monomers and promotes dissociation of the protein.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/efeitos dos fármacos , Lisofosfolipídeos/farmacologia , Porinas/química , Porinas/efeitos dos fármacos , Yersinia pseudotuberculosis/química , Western Blotting , Ácidos Graxos/análise , Ácidos Graxos/química , Conformação Proteica/efeitos dos fármacos , Espectrometria de Fluorescência , Yersinia pseudotuberculosis/genética
8.
FEBS Lett ; 587(14): 2260-5, 2013 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-23742936

RESUMO

The present work aimed to compare the effects of different lysophosphatidylethanolamine (LPE) content in lipids derived from Yersinia pseudotuberculosis cells exposed and not exposed to phenol on the conformation of OmpF-like porin of these bacteria. Differential scanning calorimetry and intrinsic protein fluorescence showed that the 2.5-fold increase of LPE content and the corresponding increase in the phase transition temperature of bacterial lipids were accompanied by enhanced protein thermostability. Integral conformational rearrangement of protein was supported by drastic changes in the microenvironment of the tryptophan residues, likely resulting in a convergence of monomers in trimeric porin and exposure of outer tryptophan residues to the water environment. These conformational changes may impede the porin channel permeability under stress conditions in bacteria.


Assuntos
Proteínas de Bactérias/química , Desinfetantes/farmacologia , Lisofosfolipídeos/metabolismo , Fenol/farmacologia , Porinas/química , Yersinia pseudotuberculosis/metabolismo , Adaptação Fisiológica , Algoritmos , Proteínas de Bactérias/metabolismo , Varredura Diferencial de Calorimetria , Lipídeos de Membrana/metabolismo , Porinas/metabolismo , Conformação Proteica , Desnaturação Proteica , Estabilidade Proteica , Espectrometria de Fluorescência , Estresse Fisiológico , Yersinia pseudotuberculosis/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...