Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pathol Int ; 71(6): 383-391, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33783897

RESUMO

Oral squamous cell carcinoma (OSCC) impairs functionality and sensuousness resulting in poor quality of life. Biomarkers can predict disease trajectory and lead to effective treatments. Transcriptomics have identified genes that are upregulated in tumor endothelial cells (TECs) compared with normal endothelial cells (NECs). Among them, chemokine receptor 7 (CXCR7) is highly expressed in TECs of several cancers and involved in angiogenesis of TECs. However, levels of CXCR7 in OSCC blood vessels have not been fully investigated. In this study, we analyzed the correlation between CXCR7 expression in TECs and clinicopathological factors in OSCC. Immunohistochemistry for CXCR7 and CD34 was performed on 59 OSCC tissue specimens resected between 1996 and 2008 at Hokkaido University Hospital. CXCR7 expression in blood vessels was evaluated by the ratio of CXCR7+/CD34+ blood vessels. CXCR7 expression was 42% and 19% in tumor and non-tumor parts, respectively, suggesting that CXCR7 expression is higher in TECs than in NECs. CXCR7 expression in TECs correlated with advanced T-stage and cancer stage. Overall survival and disease-free survival rates were higher in low-expressing CXCR7 patients than in high-expressing. These results suggest that CXCR7 expression in blood vessels may be a useful diagnostic and prognostic marker for OSCC patients.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Bucais , Receptores CXCR , Idoso , Biomarcadores Tumorais , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia , Estadiamento de Neoplasias , Neovascularização Patológica/patologia , Prognóstico , Receptores CXCR/genética , Receptores CXCR/metabolismo , Taxa de Sobrevida
2.
Cancer Res ; 80(14): 2996-3008, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32536602

RESUMO

Tumor endothelial cells (TEC) lining tumor blood vessels actively contribute to tumor progression and metastasis. In addition to tumor cells, TEC may develop drug resistance during cancer treatment, allowing the tumor cells to survive chemotherapy and metastasize. We previously reported that TECs resist paclitaxel treatment via upregulation of ABCB1. However, whether TEC phenotypes are altered by anticancer drugs remains to be clarified. Here, we show that ABCB1 expression increases after chemotherapy in urothelial carcinoma cases. The ratio of ABCB1-positive TEC before and after first-line chemotherapy in urothelial carcinoma tissues (n = 66) was analyzed by ABCB1 and CD31 immunostaining. In 42 cases (64%), this ratio increased after first-line chemotherapy. Chemotherapy elevated ABCB1 expression in endothelial cells by increasing tumor IL8 secretion. In clinical cases, ABCB1 expression in TEC correlated with IL8 expression in tumor cells after first-line chemotherapy, leading to poor prognosis. In vivo, the ABCB1 inhibitor combined with paclitaxel reduced tumor growth and metastasis compared with paclitaxel alone. Chemotherapy is suggested to cause inflammatory changes in tumors, inducing ABCB1 expression in TEC and conferring drug resistance. Overall, these findings indicate that TEC can survive during chemotherapy and provide a gateway for cancer metastasis. Targeting ABCB1 in TEC represents a novel strategy to overcome cancer drug resistance. SIGNIFICANCE: These findings show that inhibition of ABCB1 in tumor endothelial cells may improve clinical outcome, where ABCB1 expression contributes to drug resistance and metastasis following first-line chemotherapy.


Assuntos
Biomarcadores Tumorais/metabolismo , Resistencia a Medicamentos Antineoplásicos , Interleucina-8/metabolismo , Neovascularização Patológica/patologia , Paclitaxel/farmacologia , Neoplasias da Bexiga Urinária/mortalidade , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Antineoplásicos/farmacologia , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , Resistência a Múltiplos Medicamentos , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Quimioterapia de Indução , Interleucina-8/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Neovascularização Patológica/induzido quimicamente , Prognóstico , Taxa de Sobrevida , Células Tumorais Cultivadas , Neoplasias da Bexiga Urinária/irrigação sanguínea , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Cell Commun Signal ; 17(1): 169, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31847904

RESUMO

BACKGROUND: Tumor endothelial cells (TECs) perform tumor angiogenesis, which is essential for tumor growth and metastasis. Tumor cells produce large amounts of lactic acid from glycolysis; however, the mechanism underlying the survival of TECs to enable tumor angiogenesis under high lactic acid conditions in tumors remains poorly understood. METHODOLOGY: The metabolomes of TECs and normal endothelial cells (NECs) were analyzed by capillary electrophoresis time-of-flight mass spectrometry. The expressions of pH regulators in TECs and NECs were determined by quantitative reverse transcription-PCR. Cell proliferation was measured by the MTS assay. Western blotting and ELISA were used to validate monocarboxylate transporter 1 and carbonic anhydrase 2 (CAII) protein expression within the cells, respectively. Human tumor xenograft models were used to access the effect of CA inhibition on tumor angiogenesis. Immunohistochemical staining was used to observe CAII expression, quantify tumor microvasculature, microvessel pericyte coverage, and hypoxia. RESULTS: The present study shows that, unlike NECs, TECs proliferate in lactic acidic. TECs showed an upregulated CAII expression both in vitro and in vivo. CAII knockdown decreased TEC survival under lactic acidosis and nutrient-replete conditions. Vascular endothelial growth factor A and vascular endothelial growth factor receptor signaling induced CAII expression in NECs. CAII inhibition with acetazolamide minimally reduced tumor angiogenesis in vivo. However, matured blood vessel number increased after acetazolamide treatment, similar to bevacizumab treatment. Additionally, acetazolamide-treated mice showed decreased lung metastasis. CONCLUSION: These findings suggest that due to their effect on blood vessel maturity, pH regulators like CAII are promising targets of antiangiogenic therapy. Video Abstract.


Assuntos
Acidose Láctica/metabolismo , Anidrase Carbônica II/metabolismo , Células Neoplásicas Circulantes/metabolismo , Microambiente Tumoral , Acidose Láctica/patologia , Animais , Anidrase Carbônica II/genética , Proliferação de Células , Sobrevivência Celular , Células Endoteliais/metabolismo , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Células Neoplásicas Circulantes/patologia , Transdução de Sinais , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA