Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Sci Rep ; 11(1): 17665, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34480080

RESUMO

In a previous study, we showed that the Hedgehog (Hh) signalling pathway is aberrantly activated in vulval squamous cell carcinoma (VSCC). In this study, we further validated our findings on a prospective cohort of primary VSCC cases, where immunohistochemical staining confirmed that key Hh pathway components were overexpressed in VSCC compared to normal vulval epithelium. We also undertook a series of in vitro studies to determine the extent of Hh pathway activation in VSCC-derived cell lines, and examine the consequences of pathway inhibition on the growth of these cells. We found that of six cell lines tested, four displayed elevated baseline Hh pathway activity that was dependent on SHH ligand, or in one case, a PTCH1 gene mutation. Hh signalling appeared necessary to sustain cell growth, as SHH ligand depletion with Robotikinin or SMO inhibition, either with chemical inhibitors (Itraconazole or LDE-225) or SMO-specific siRNA, attenuated GLI1 activity and cell proliferation in both monolayer and organotypic raft culture. Furthermore, treatment of Hh-dependent cell lines with SMO inhibitors sensitised cells to Cisplatin. Findings from our study offer us the opportunity to explore further the development of targeted chemotherapy for women with VSCC driven by aberrant Hh activation.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Proteínas Hedgehog/metabolismo , Transdução de Sinais/fisiologia , Neoplasias Vulvares/metabolismo , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Queratinócitos/metabolismo , Neoplasias Vulvares/patologia
3.
Pathogens ; 10(8)2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34451446

RESUMO

Latent membrane protein 1 (LMP1), the major oncoprotein encoded by Epstein-Barr virus (EBV), is expressed at widely variable levels in undifferentiated nasopharyngeal carcinoma (NPC) biopsies, fueling intense debate in the field as to the importance of this oncogenic protein in disease pathogenesis. LMP1-positive NPCs are reportedly more aggressive, and in a similar vein, the presence of cancer-associated fibroblasts (CAFs) surrounding "nests" of tumour cells in NPC serve as indicators of poor prognosis. However, there is currently no evidence linking LMP1 expression and the presence of CAFs in NPC. In this study, we demonstrate the ability of LMP1 to recruit fibroblasts in vitro in an ERK-MAPK-dependent mechanism, along with enhanced viability, invasiveness and transformation to a myofibroblast-like phenotype. Taken together, these findings support a putative role for LMP1 in recruiting CAFs to the tumour microenvironment in NPC, ultimately contributing to metastatic disease.

4.
Nat Commun ; 12(1): 4193, 2021 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-34234122

RESUMO

Interplay between EBV infection and acquired genetic alterations during nasopharyngeal carcinoma (NPC) development remains vague. Here we report a comprehensive genomic analysis of 70 NPCs, combining whole-genome sequencing (WGS) of microdissected tumor cells with EBV oncogene expression to reveal multiple aspects of cellular-viral co-operation in tumorigenesis. Genomic aberrations along with EBV-encoded LMP1 expression underpin constitutive NF-κB activation in 90% of NPCs. A similar spectrum of somatic aberrations and viral gene expression undermine innate immunity in 79% of cases and adaptive immunity in 47% of cases; mechanisms by which NPC may evade immune surveillance despite its pro-inflammatory phenotype. Additionally, genomic changes impairing TGFBR2 promote oncogenesis and stabilize EBV infection in tumor cells. Fine-mapping of CDKN2A/CDKN2B deletion breakpoints reveals homozygous MTAP deletions in 32-34% of NPCs that confer marked sensitivity to MAT2A inhibition. Our work concludes that NPC is a homogeneously NF-κB-driven and immune-protected, yet potentially druggable, cancer.


Assuntos
Infecções por Vírus Epstein-Barr/imunologia , Herpesvirus Humano 4/genética , Carcinoma Nasofaríngeo/imunologia , Neoplasias Nasofaríngeas/imunologia , Evasão Tumoral/genética , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Carcinogênese/imunologia , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p15/genética , Inibidor p16 de Quinase Dependente de Ciclina/genética , Infecções por Vírus Epstein-Barr/genética , Infecções por Vírus Epstein-Barr/terapia , Infecções por Vírus Epstein-Barr/virologia , Feminino , Regulação Viral da Expressão Gênica/imunologia , Herpesvirus Humano 4/imunologia , Herpesvirus Humano 4/patogenicidade , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Metionina Adenosiltransferase/antagonistas & inibidores , Metionina Adenosiltransferase/metabolismo , Camundongos , NF-kappa B/metabolismo , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/terapia , Carcinoma Nasofaríngeo/virologia , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/terapia , Neoplasias Nasofaríngeas/virologia , Nasofaringe/imunologia , Nasofaringe/patologia , Nasofaringe/cirurgia , Nasofaringe/virologia , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Deleção de Sequência , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Evasão Tumoral/efeitos dos fármacos , Sequenciamento Completo do Genoma , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Pathogens ; 10(4)2021 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-33920477

RESUMO

Epigallocatechin-3-gallate (EGCG), the primary bioactive polyphenol in green tea, has been shown to inhibit the growth of human papilloma virus (HPV)-transformed keratinocytes. Here, we set out to examine the consequences of EGCG treatment on the growth of HPV18-immortalised foreskin keratinocytes (HFK-HPV18) and an authentic HPV18-positive vulvar intraepithelial neoplasia (VIN) clone, focusing on its ability to influence cell proliferation and differentiation and to impact on viral oncogene expression and virus replication. EGCG treatment was associated with degradation of the E6 and E7 oncoproteins and an upregulation of their associated tumour suppressor genes; consequently, keratinocyte proliferation was inhibited in both monolayer and organotypic raft culture. While EGCG exerted a profound effect on cell proliferation, it had little impact on keratinocyte differentiation. Expression of the late viral protein E4 was suppressed in the presence of EGCG, suggesting that EGCG was able to block productive viral replication in differentiating keratinocytes. Although EGCG did not alter the levels of E6 and E7 mRNA, it enhanced the turnover of the E6 and E7 proteins. The addition of MG132, a proteasome inhibitor, to EGCG-treated keratinocytes led to the accumulation of the E6/E7 proteins, showing that EGCG acts as an anti-viral, targeting the E6 and E7 proteins for proteasome-mediated degradation.

6.
Front Oncol ; 11: 640207, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33718235

RESUMO

Nasopharyngeal carcinoma (NPC) is closely associated with Epstein-Barr virus (EBV) infection. It is also characterized by heavy infiltration with non-malignant leucocytes. The EBV-encoded latent membrane protein 1 (LMP1) is believed to play an important role in NPC pathogenesis by virtue of its ability to activate multiple cell signaling pathways which collectively promote cell proliferation and survival, angiogenesis, invasiveness, and aerobic glycolysis. LMP1 also affects cell-cell interactions, antigen presentation, and cytokine and chemokine production. Here, we discuss how LMP1 modulates local immune responses that contribute to the establishment of the NPC tumor microenvironment. We also discuss strategies for targeting the LMP1 protein as a novel therapy for EBV-driven malignancies.

7.
Pathogens ; 9(7)2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32708289

RESUMO

The Epstein-Barr virus (EBV)-encoded nuclear antigen 1 (EBNA1) protein is expressed in all virus-associated malignancies, where it performs an essential role in the maintenance, replication and transcription of the EBV genome. In recent years, it has become apparent that EBNA1 can also influence cellular gene transcription. Here, we demonstrate that EBNA1 is able to stimulate the expression of the Transforming growth factor-beta (TGFß) superfamily member, bone morphogenic protein 2 (BMP2), with consequential activation of the BMP signalling pathway in carcinoma cell lines. We show that BMP pathway activation is associated with an increase in the migratory capacity of carcinoma cells, an effect that can be ablated by the BMP antagonist, Noggin. Gene expression profiling of authentic EBV-positive nasopharyngeal carcinoma (NPC) tumours revealed the consistent presence of BMP ligands, established BMP pathway effectors and putative target genes, constituting a prominent BMP "signature" in this virus-associated cancer. Our findings show that EBNA1 is the major viral-encoded protein responsible for activating the BMP signalling pathway in carcinoma cells and supports a role for this pathway in promoting cell migration and possibly, metastatic spread.

8.
Cancers (Basel) ; 12(7)2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32708965

RESUMO

Epstein-Barr virus (EBV) is closely linked to the development of a number of human cancers. EBV-associated malignancies are characterized by a restricted pattern of viral latent protein expression which is sufficient for the virus to both initiate and sustain cell growth and to protect virus-infected cells from immune attack. Expression of these EBV proteins in malignant cells provides an attractive target for therapeutic intervention. Among the viral proteins expressed in the EBV-associated epithelial malignancies, the protein encoded by the BamHI-A rightward frame 1 (BARF1) is of particular interest. BARF1 is a viral oncoprotein selectively expressed in latently infected epithelial cancers, nasopharyngeal carcinoma (NPC) and EBV-positive gastric cancer (EBV-GC). Here, we review the roles of BARF1 in oncogenesis and immunomodulation. We also discuss potential strategies for targeting the BARF1 protein as a novel therapy for EBV-driven epithelial cancers.

9.
Proc Natl Acad Sci U S A ; 116(28): 14144-14153, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31235597

RESUMO

Epstein-Barr virus (EBV) induces histone modifications to regulate signaling pathways involved in EBV-driven tumorigenesis. To date, the regulatory mechanisms involved are poorly understood. In this study, we show that EBV infection of epithelial cells is associated with aberrant histone modification; specifically, aberrant histone bivalent switches by reducing the transcriptional activation histone mark (H3K4me3) and enhancing the suppressive mark (H3K27me3) at the promoter regions of a panel of DNA damage repair members in immortalized nasopharyngeal epithelial (NPE) cells. Sixteen DNA damage repair family members in base excision repair (BER), homologous recombination, nonhomologous end-joining, and mismatch repair (MMR) pathways showed aberrant histone bivalent switches. Among this panel of DNA repair members, MLH1, involved in MMR, was significantly down-regulated in EBV-infected NPE cells through aberrant histone bivalent switches in a promoter hypermethylation-independent manner. Functionally, expression of MLH1 correlated closely with cisplatin sensitivity both in vitro and in vivo. Moreover, seven BER members with aberrant histone bivalent switches in the EBV-positive NPE cell lines were significantly enriched in pathway analysis in a promoter hypermethylation-independent manner. This observation is further validated by their down-regulation in EBV-infected NPE cells. The in vitro comet and apurinic/apyrimidinic site assays further confirmed that EBV-infected NPE cells showed reduced DNA damage repair responsiveness. These findings suggest the importance of EBV-associated aberrant histone bivalent switch in host cells in subsequent suppression of DNA damage repair genes in a methylation-independent manner.


Assuntos
Infecções por Vírus Epstein-Barr/genética , Herpesvirus Humano 4/genética , Código das Histonas/genética , Histonas/genética , Ilhas de CpG/genética , Dano ao DNA/genética , Metilação de DNA/genética , Reparo de Erro de Pareamento de DNA/genética , Reparo do DNA/genética , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Infecções por Vírus Epstein-Barr/patologia , Infecções por Vírus Epstein-Barr/virologia , Regulação da Expressão Gênica/genética , Herpesvirus Humano 4/patogenicidade , Recombinação Homóloga/genética , Humanos , Proteína 1 Homóloga a MutL/genética , Nasofaringe/crescimento & desenvolvimento , Nasofaringe/patologia , Nasofaringe/virologia , Regiões Promotoras Genéticas
10.
Cancers (Basel) ; 10(8)2018 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-30060514

RESUMO

The transforming growth factor-ß (TGF-ß) signalling pathway plays a critical role in carcinogenesis. It has a biphasic action by initially suppressing tumorigenesis but promoting tumour progression in the later stages of disease. Consequently, the functional outcome of TGF-ß signalling is strongly context-dependent and is influenced by various factors including cell, tissue and cancer type. Disruption of this pathway can be caused by various means, including genetic and environmental factors. A number of human viruses have been shown to modulate TGF-ß signalling during tumorigenesis. In this review, we describe how this pathway is perturbed in Epstein-Barr virus (EBV)-associated cancers and how EBV interferes with TGF-ß signal transduction. The role of TGF-ß in regulating the EBV life cycle in tumour cells is also discussed.

11.
J Pathol ; 246(2): 180-190, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29968360

RESUMO

Nasopharyngeal carcinoma (NPC) is closely associated with Epstein-Barr virus (EBV) infection. The EBV-encoded latent membrane protein 1 (LMP1), which is commonly expressed in NPC, engages multiple signaling pathways that promote cell growth, transformation, and metabolic reprogramming. Here, we report a novel function of LMP1 in promoting de novo lipogenesis. LMP1 increases the expression, maturation and activation of sterol regulatory element-binding protein 1 (SREBP1), a master regulator of lipogenesis, and its downstream target fatty acid synthase (FASN). LMP1 also induces de novo lipid synthesis and lipid droplet formation. In contrast, small interfering RNA (siRNA) knockdown of LMP1 in EBV-infected epithelial cells diminished SREBP1 activation and lipid biosynthesis. Furthermore, inhibition of the mammalian target of rapamycin (mTOR) pathway, through the use of either mTOR inhibitors or siRNAs, significantly reduced LMP1-mediated SREBP1 activity and lipogenesis, indicating that LMP1 activation of the mTOR pathway is required for SREBP1-mediated lipogenesis. In primary NPC tumors, FASN overexpression is common, with high levels correlating significantly with LMP1 expression. Moreover, elevated FASN expression was associated with aggressive disease and poor survival in NPC patients. Luteolin and fatostatin, two inhibitors of lipogenesis, suppressed lipogenesis and proliferation of nasopharyngeal epithelial cells, effects that were more profound in cells expressing LMP1. Luteolin and fatostatin also dramatically inhibited NPC tumor growth in vitro and in vivo. Our findings demonstrate that LMP1 activation of SREBP1-mediated lipogenesis promotes tumor cell growth and is involved in EBV-driven NPC pathogenesis. Our results also reveal the therapeutic potential of utilizing lipogenesis inhibitors in the treatment of locally advanced or metastatic NPC. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Assuntos
Proliferação de Células , Herpesvirus Humano 4/metabolismo , Lipogênese , Carcinoma Nasofaríngeo/metabolismo , Neoplasias Nasofaríngeas/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteínas da Matriz Viral/metabolismo , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Progressão da Doença , Ácido Graxo Sintase Tipo I/genética , Ácido Graxo Sintase Tipo I/metabolismo , Feminino , Herpesvirus Humano 4/genética , Humanos , Gotículas Lipídicas/metabolismo , Lipogênese/efeitos dos fármacos , Luteolina/farmacologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Naftiridinas/farmacologia , Carcinoma Nasofaríngeo/tratamento farmacológico , Carcinoma Nasofaríngeo/patologia , Carcinoma Nasofaríngeo/virologia , Neoplasias Nasofaríngeas/tratamento farmacológico , Neoplasias Nasofaríngeas/patologia , Neoplasias Nasofaríngeas/virologia , Piridinas/farmacologia , Transdução de Sinais , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Tiazóis/farmacologia , Proteínas da Matriz Viral/genética , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Cancers (Basel) ; 10(5)2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29723998

RESUMO

The Epstein⁻Barr virus (EBV)-encoded latent membrane protein 1 (LMP1) oncogene can induce profound effects on epithelial growth and differentiation including many of the features of the epithelial-to-mesenchymal transition (EMT). To better characterise these effects, we used the well-defined Madin Darby Canine Kidney (MDCK) epithelial cell model and found that LMP1 expression in these cells induces EMT as defined by characteristic morphological changes accompanied by loss of E-cadherin, desmosomal cadherin and tight junction protein expression. The induction of the EMT phenotype required a functional CTAR1 domain of LMP1 and studies using pharmacological inhibitors revealed contributions from signalling pathways commonly induced by integrin⁻ligand interactions: extracellular signal-regulated kinases/mitogen-activated protein kinases (ERK-MAPK), PI3-Kinase and tyrosine kinases, but not transforming growth factor beta (TGFβ). More detailed analysis implicated the CTAR1-mediated induction of Slug and Twist in LMP1-induced EMT. A key role for β1 integrin signalling in LMP1-mediated ERK-MAPK and focal adhesion kianse (FAK) phosphorylation was observed, and β1 integrin activation was found to enhance LMP1-induced cell viability and survival. These findings support an important role for LMP1 in disease pathogenesis through transcriptional reprogramming that enhances tumour cell survival and leads to a more invasive, metastatic phenotype.

13.
Int J Cancer ; 141(8): 1512-1521, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28542909

RESUMO

The γ-herpesviruses, EBV and KSHV, are closely associated with a number of human cancers. While the signal transduction pathways exploited by γ-herpesviruses to promote cell growth, survival and transformation have been reported, recent studies have uncovered the impact of γ-herpesvirus infection on host cell metabolism. Here, we review the mechanisms used by γ-herpesviruses to induce metabolic reprogramming in host cells, focusing on their ability to modulate the activity of metabolic regulators and manipulate metabolic pathways. While γ-herpesviruses alter metabolic phenotypes as a means to support viral infection and long-term persistence, this modulation can inadvertently contribute to cancer development. Strategies that target deregulated metabolic phenotypes induced by γ-herpesviruses provide new opportunities for therapeutic intervention.


Assuntos
Herpesvirus Humano 4/fisiologia , Herpesvirus Humano 8/fisiologia , Neoplasias/metabolismo , Neoplasias/virologia , Carcinogênese , Reprogramação Celular/fisiologia , Infecções por Vírus Epstein-Barr/metabolismo , Infecções por Vírus Epstein-Barr/patologia , Infecções por Herpesviridae/metabolismo , Infecções por Herpesviridae/patologia , Herpesvirus Humano 4/metabolismo , Herpesvirus Humano 8/metabolismo , Humanos
14.
J Pathol ; 242(1): 62-72, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28240350

RESUMO

Undifferentiated nasopharyngeal carcinoma (NPC) is a cancer with high metastatic potential that is consistently associated with Epstein-Barr virus (EBV) infection. In this study, we have investigated the functional contribution of sphingosine-1-phosphate (S1P) signalling to the pathogenesis of NPC. We show that EBV infection or ectopic expression of the EBV-encoded latent genes (EBNA1, LMP1, and LMP2A) can up-regulate sphingosine kinase 1 (SPHK1), the key enzyme that produces S1P, in NPC cell lines. Exogenous addition of S1P promotes the migration of NPC cells through the activation of AKT; shRNA knockdown of SPHK1 resulted in a reduction in the levels of activated AKT and inhibition of cell migration. We also show that S1P receptor 3 (S1PR3) mRNA is overexpressed in EBV-positive NPC patient-derived xenografts and a subset of primary NPC tissues, and that knockdown of S1PR3 suppressed the activation of AKT and the S1P-induced migration of NPC cells. Taken together, our data point to a central role for EBV in mediating the oncogenic effects of S1P in NPC and identify S1P signalling as a potential therapeutic target in this disease. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Infecções por Vírus Epstein-Barr/complicações , Lisofosfolipídeos/fisiologia , Neoplasias Nasofaríngeas/virologia , Proteína Oncogênica v-akt/metabolismo , Receptores de Lisoesfingolipídeo/metabolismo , Esfingosina/análogos & derivados , Adulto , Idoso , Animais , Carcinoma , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Infecções por Vírus Epstein-Barr/genética , Infecções por Vírus Epstein-Barr/metabolismo , Infecções por Vírus Epstein-Barr/patologia , Feminino , Regulação Neoplásica da Expressão Gênica/fisiologia , Técnicas de Silenciamento de Genes , Xenoenxertos , Humanos , Lisofosfolipídeos/farmacologia , Masculino , Pessoa de Meia-Idade , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patologia , RNA Mensageiro/genética , Receptores de Lisoesfingolipídeo/genética , Receptores de Lisoesfingolipídeo/fisiologia , Transdução de Sinais/fisiologia , Esfingosina/farmacologia , Esfingosina/fisiologia , Receptores de Esfingosina-1-Fosfato , Regulação para Cima
15.
Clin Cancer Res ; 22(19): 4901-4912, 2016 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-27297582

RESUMO

PURPOSE: Lenalidomide, thalidomide, and pomalidomide (LTP) are immunomodulatory agents approved for use in multiple myeloma, but in some settings, especially with alkylating agents, an increase in Hodgkin lymphoma and other secondary primary malignancies (SPM) has been noted. Some of these malignancies have been linked to Epstein-Barr virus (EBV), raising the possibility that immunomodulatory drugs disrupt latent EBV infection. EXPERIMENTAL DESIGN: We studied the ability of LTP to reactivate latently infected EBV-positive cell lines in vitro and in vivo, and evaluated the EBV viral load in archived serum samples from patients who received a lenalidomide, thalidomide, and dexamethasone (LTD) combination. RESULTS: Treatment of EBV-infected B-cell lines with LTP at physiologically relevant concentrations induced the immediate early gene BZLF1, the early gene BMRF1, and the late proteins VCA and BCFR1. This occurred in the potency order pomalidomide > lenalidomide > thalidomide, and the nucleoside analogue ganciclovir enhanced the cytotoxic effects of lenalidomide and pomalidomide in Burkitt lymphoma cells in vitro and in vivo EBV reactivation was related to PI3K stimulation and Ikaros suppression, and blocked by the PI3Kδ inhibitor idelalisib. Combinations of lenalidomide with dexamethasone or rituximab increased EBV reactivation compared with lenalidomide alone and, importantly, lenalidomide with melphalan produced even greater reactivation. CONCLUSIONS: We conclude LTP may reactivate EBV-positive resting memory B cells thereby enhancing EBV lytic cycle and host immune suppression. Clin Cancer Res; 22(19); 4901-12. ©2016 AACR.


Assuntos
Infecções por Vírus Epstein-Barr/complicações , Fatores Imunológicos/efeitos adversos , Mieloma Múltiplo/tratamento farmacológico , Ativação Viral/efeitos dos fármacos , Latência Viral/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Herpesvirus Humano 4/efeitos dos fármacos , Humanos , Fator de Transcrição Ikaros/metabolismo , Lenalidomida , Camundongos , Camundongos SCID , Mieloma Múltiplo/virologia , Segunda Neoplasia Primária/virologia , Fosfatidilinositol 3-Quinases/metabolismo , Talidomida/efeitos adversos , Talidomida/análogos & derivados
16.
Sci Rep ; 6: 19533, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26782058

RESUMO

Approximately 20% of global cancer incidence is causally linked to an infectious agent. Epstein-Barr virus (EBV) accounts for around 1% of all virus-associated cancers and is associated with nasopharyngeal carcinoma (NPC). Latent membrane protein 1 (LMP1), the major oncoprotein encoded by EBV, behaves as a constitutively active tumour necrosis factor (TNF) receptor activating a variety of signalling pathways, including the three classic MAPKs (ERK-MAPK, p38 MAPK and JNK/SAPK). The present study identifies novel signalling properties for this integral membrane protein via the induction and secretion of activin A and TGFß1, which are both required for LMP1's ability to induce the expression of the extracellular matrix protein, fibronectin. However, it is evident that LMP1 is unable to activate the classic Smad-dependent TGFß signalling pathway, but rather elicits its effects through the non-Smad arm of TGFß signalling. In addition, there is a requirement for JNK/SAPK signalling in LMP1-mediated fibronectin induction. LMP1 also induces the expression and activation of the major fibronectin receptor, α5ß1 integrin, an effect that is accompanied by increased focal adhesion formation and turnover. Taken together, these findings support the putative role for LMP1 in the pathogenesis of NPC by contributing to the metastatic potential of epithelial cells.


Assuntos
Ativinas/metabolismo , Adesão Celular/fisiologia , Herpesvirus Humano 4/metabolismo , Integrina beta1/metabolismo , Proteínas Oncogênicas/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Proteínas da Matriz Viral/metabolismo , Carcinoma , Linhagem Celular , Células Epiteliais/virologia , Infecções por Vírus Epstein-Barr/virologia , Humanos , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/virologia , Transdução de Sinais/fisiologia
17.
J Pathol ; 237(2): 238-48, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26096068

RESUMO

Non-keratinizing nasopharyngeal carcinoma (NPC) is closely associated with Epstein-Barr virus (EBV) infection. The EBV-encoded latent membrane protein 1 (LMP1) is believed to play an important role in NPC pathogenesis by virtue of its ability to activate multiple cell signalling pathways which collectively promote cell proliferation, transformation, angiogenesis, and invasiveness, as well as modulation of energy metabolism. In this study, we report that LMP1 increases cellular uptake of glucose and glutamine, enhances LDHA activity and lactate production, but reduces pyruvate kinase activity and pyruvate concentrations. LMP1 also increases the phosphorylation of PKM2, LDHA, and FGFR1, as well as the expression of PDHK1, FGFR1, c-Myc, and HIF-1α, regardless of oxygen availability. Collectively, these findings suggest that LMP1 promotes aerobic glycolysis. With respect to FGFR1 signalling, LMP1 not only increases FGFR1 expression, but also up-regulates FGF2, leading to constitutive activation of the FGFR1 signalling pathway. Furthermore, two inhibitors of FGFR1 (PD161570 and SU5402) attenuate LMP1-mediated aerobic glycolysis, cellular transformation (proliferation and anchorage-independent growth), cell migration, and invasion in nasopharyngeal epithelial cells, identifying FGFR1 signalling as a key pathway in LMP1-mediated growth transformation. Immunohistochemical staining revealed that high levels of phosphorylated FGFR1 are common in primary NPC specimens and that this correlated with the expression of LMP1. In addition, FGFR1 inhibitors suppress cell proliferation and anchorage-independent growth of NPC cells. Our current findings demonstrate that LMP1-mediated FGFR1 activation contributes to aerobic glycolysis and transformation of epithelial cells, thereby implicating FGF2/FGFR1 signalling activation in the EBV-driven pathogenesis of NPC.


Assuntos
Transformação Celular Viral , Células Epiteliais/metabolismo , Glicólise , Herpesvirus Humano 4/metabolismo , Neoplasias Nasofaríngeas/metabolismo , Nasofaringe/metabolismo , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais , Proteínas da Matriz Viral/metabolismo , Carcinoma , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Transformação Celular Viral/efeitos dos fármacos , Células Epiteliais/patologia , Células Epiteliais/virologia , Fator 2 de Crescimento de Fibroblastos/metabolismo , Regulação Neoplásica da Expressão Gênica , Glicólise/efeitos dos fármacos , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/patogenicidade , Interações Hospedeiro-Patógeno , Humanos , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/patologia , Neoplasias Nasofaríngeas/virologia , Nasofaringe/patologia , Nasofaringe/virologia , Invasividade Neoplásica , Fosforilação , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Proteínas da Matriz Viral/genética
18.
J Pathol ; 235(3): 456-65, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25294670

RESUMO

Undifferentiated nasopharyngeal carcinoma (NPC) is a highly metastatic disease that is consistently associated with Epstein-Barr virus (EBV) infection. In this study, we have investigated the contribution of lysophosphatidic acid (LPA) signalling to the pathogenesis of NPC. Here we demonstrate two distinct functional roles for LPA in NPC. First, we show that LPA enhances the migration of NPC cells and second, that it can inhibit the activity of EBV-specific cytotoxic T cells. Focusing on the first of these phenotypes, we show that one of the LPA receptors, LPA receptor 5 (LPAR5), is down-regulated in primary NPC tissues and that this down-regulation promotes the LPA-induced migration of NPC cell lines. Furthermore, we found that EBV infection or ectopic expression of the EBV-encoded LMP2A was sufficient to down-regulate LPAR5 in NPC cell lines. Our data point to a central role for EBV in mediating the oncogenic effects of LPA in NPC and identify LPA signalling as a potential therapeutic target in this disease.


Assuntos
Regulação para Baixo/fisiologia , Infecções por Vírus Epstein-Barr/fisiopatologia , Regulação Neoplásica da Expressão Gênica/fisiologia , Lisofosfolipídeos/fisiologia , Neoplasias Nasofaríngeas/fisiopatologia , Receptores de Ácidos Lisofosfatídicos/fisiologia , Transdução de Sinais/fisiologia , Adenocarcinoma/patologia , Adenocarcinoma/fisiopatologia , Carcinoma , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Herpesvirus Humano 4/fisiologia , Humanos , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/patologia , Diester Fosfórico Hidrolases/fisiologia , Receptores de Ácidos Lisofosfatídicos/genética , Linfócitos T Citotóxicos/patologia , Proteínas da Matriz Viral/fisiologia
19.
Chin J Cancer ; 33(12): 581-90, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25418193

RESUMO

Since its discovery 50 years ago, Epstein-Barr virus (EBV) has been linked to the development of cancers originating from both lymphoid and epithelial cells. Approximately 95% of the world's population sustains an asymptomatic, life-long infection with EBV. The virus persists in the memory B-cell pool of normal healthy individuals, and any disruption of this interaction results in virus-associated B-cell tumors. The association of EBV with epithelial cell tumors, specifically nasopharyngeal carcinoma (NPC) and EBV-positive gastric carcinoma (EBV-GC), is less clear and is currently thought to be caused by the aberrant establishment of virus latency in epithelial cells that display premalignant genetic changes. Although the precise role of EBV in the carcinogenic process is currently poorly understood, the presence of the virus in all tumor cells provides opportunities for developing novel therapeutic and diagnostic approaches. The study of EBV and its role in carcinomas continues to provide insight into the carcinogenic process that is relevant to a broader understanding of tumor pathogenesis and to the development of targeted cancer therapies.


Assuntos
Infecções por Vírus Epstein-Barr/complicações , Herpesvirus Humano 4 , Neoplasias Nasofaríngeas/virologia , Linfócitos B , Carcinoma , Células Epiteliais , Humanos , Linfoma de Células B , Carcinoma Nasofaríngeo , Neoplasias Gástricas
20.
J Pathol ; 231(3): 367-77, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23934731

RESUMO

Nasopharyngeal carcinoma (NPC) is a cancer common in southern China and South East Asia that is causally linked to Epstein-Barr virus (EBV) infection. Here, we demonstrate that NPC displays frequent dysregulation of the Hedgehog (HH) pathway, a pathway implicated in the maintenance of stem cells, but whose aberrant activation in adult tissues can lead to cancer. Using authentic EBV-positive carcinoma-derived cell lines and nasopharyngeal epithelial cell lines latently infected with EBV as models for NPC in vitro, we show that EBV activates the HH signalling pathway through autocrine induction of SHH ligand. Moreover, we find that constitutive engagement of the HH pathway induces the expression of a number of stemness-associated genes and imposes stem-like characteristics on EBV-infected epithelial cells in vitro. Using epithelial cells expressing individual EBV latent genes detected in NPC, we show that EBNA1, LMP1, and LMP2A are all capable of inducing SHH ligand and activating the HH pathway, but only LMP1 and LMP2A are able to induce expression of stemness-associated marker genes. Our findings not only identify a role for dysregulated HH signalling in NPC oncogenesis, but also provide a novel rationale for therapeutic intervention.


Assuntos
Células Epiteliais/metabolismo , Células Epiteliais/virologia , Proteínas Hedgehog/metabolismo , Herpesvirus Humano 4/metabolismo , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/virologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/virologia , Transdução de Sinais , Carcinoma , Linhagem Celular , Transformação Celular Viral , Células Epiteliais/patologia , Antígenos Nucleares do Vírus Epstein-Barr/genética , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo , Regulação Neoplásica da Expressão Gênica , Herpesvirus Humano 4/genética , Humanos , Ligantes , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/patologia , Células-Tronco Neoplásicas/patologia , Fenótipo , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...