Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 12(5): e0353423, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38534149

RESUMO

To address intracellular mycobacterial infections, we developed a cocktail of four enzymes that catalytically attack three layers of the mycobacterial envelope. This cocktail is delivered to macrophages, through a targeted liposome presented here as ENTX_001. Endolytix Cocktail 1 (EC1) leverages mycobacteriophage lysin enzymes LysA and LysB, while also including α-amylase and isoamylase for degradation of the mycobacterial envelope from outside of the cell. The LysA family of proteins from mycobacteriophages has been shown to cleave the peptidoglycan layer, whereas LysB is an esterase that hydrolyzes the linkage between arabinogalactan and mycolic acids of the mycomembrane. The challenge of gaining access to the substrates of LysA and LysB provided exogenously was addressed by adding amylase enzymes that degrade the extracellular capsule shown to be present in Mycobacterium tuberculosis. This enzybiotic approach avoids antimicrobial resistance, specific receptor-mediated binding, and intracellular DNA surveillance pathways that limit many bacteriophage applications. We show this cocktail of enzymes is bactericidal in vitro against both rapid- and slow-growing nontuberculous mycobacteria (NTM) as well as M. tuberculosis strains. The EC1 cocktail shows superior killing activity when compared to previously characterized LysB alone. EC1 is also powerfully synergistic with standard-of-care antibiotics. In addition to in vitro killing of NTM, ENTX_001 demonstrates the rescue of infected macrophages from necrotic death by Mycobacteroides abscessus and Mycobacterium avium. Here, we demonstrate shredding of mycobacterial cells by EC1 into cellular debris as a mechanism of bactericide.IMPORTANCEThe world needs entirely new forms of antibiotics as resistance to chemical antibiotics is a critical problem facing society. We addressed this need by developing a targeted enzyme therapy for a broad range of species and strains within mycobacteria and highly related genera including nontuberculous mycobacteria such as Mycobacteroides abscessus, Mycobacterium avium, Mycobacterium intracellulare, as well as Mycobacterium tuberculosis. One advantage of this approach is the ability to drive our lytic enzymes through encapsulation into macrophage-targeted liposomes resulting in attack of mycobacteria in the cells that harbor them where they hide from the adaptive immune system and grow. Furthermore, this approach shreds mycobacteria independent of cell physiology as the drug targets the mycobacterial envelope while sidestepping the host range limitations observed with phage therapy and resistance to chemical antibiotics.


Assuntos
Galactanos , Macrófagos , Micobacteriófagos , Mycobacterium tuberculosis , Micobactérias não Tuberculosas , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Micobacteriófagos/genética , Micobacteriófagos/enzimologia , Macrófagos/microbiologia , Macrófagos/virologia , Humanos , Micobactérias não Tuberculosas/efeitos dos fármacos , Lipossomos/química , Antibacterianos/farmacologia , Peptidoglicano/metabolismo , Testes de Sensibilidade Microbiana , Endopeptidases/metabolismo , Endopeptidases/farmacologia , Endopeptidases/genética
2.
Mol Microbiol ; 117(6): 1419-1433, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35526138

RESUMO

Toxin-antitoxin loci regulate adaptive responses to stresses associated with the host environment and drug exposure. Phylogenomic studies have shown that Mycobacterium tuberculosis encodes a naturally expanded type II toxin-antitoxin system, including ParDE/RelBE superfamily members. Type II toxins are presumably regulated exclusively through protein-protein interactions with type II antitoxins. However, experimental observations in M. tuberculosis indicated that additional control mechanisms regulate RelBE2 type II loci under host-associated stress conditions. Herein, we describe for the first time a novel antisense RNA, termed asRelE2, that co-regulates RelE2 production via targeted processing by the Mtb RNase III, Rnc. We find that convergent expression of this coding-antisense hybrid TA locus, relBE2-asrelE2, is controlled in a cAMP-dependent manner by the essential cAMP receptor protein transcription factor, Crp, in response to the host-associated stresses of low pH and nutrient limitation. Ex vivo survival studies with relE2 and asrelE2 knockout strains showed that RelE2 contributes to Mtb survival in activated macrophages and low pH to nutrient limitation. To our knowledge, this is the first report of a novel tripartite type IIb TA loci and antisense post-transcriptional regulation of a type II TA loci.


Assuntos
Antitoxinas , Toxinas Bacterianas , Mycobacterium tuberculosis , Sistemas Toxina-Antitoxina , Antitoxinas/genética , Antitoxinas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , RNA Antissenso/genética , RNA Antissenso/metabolismo , Sistemas Toxina-Antitoxina/genética
3.
Curr Protoc ; 1(12): e312, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34941021

RESUMO

Guinea pigs have been used as a model for Mycobacterium tuberculosis infection for many years and have been more recently adopted as a model for testing new tuberculosis (TB) vaccines. From the time of Robert Koch, who used guinea pigs to test theories about the newly discovered pathogen, the guinea pig has modeled active human infections, as it is susceptible to infection with low numbers of organisms. This article describes the modern use of the guinea pig to examine the pathology of the disease and the protocols used to examine specific outcomes associated with aerosol infection with virulent M. tuberculosis. The guinea pig is used extensively to investigate the ability of new TB vaccines to reduce TB disease, and two models have been employed. The first is the long-term disease model, in which vaccinated guinea pigs are monitored for disease after infection, and the second is the short-term assessment of mycobacterial burden model, which can determine the ability of a vaccine to reduce organism burden. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Preparation of virulent Mycobacterium tuberculosis seed stocks for animal infections Basic Protocol 2: Preparation of virulent Mycobacterium tuberculosis working stocks for animal infections Basic Protocol 3: Preparation of M. tuberculosis for aerosol infection of guinea pigs Basic Protocol 4: Injection of guinea pigs Basic Protocol 5: Blood collection from live guinea pigs Basic Protocol 6: Guinea pig euthanasia.


Assuntos
Mycobacterium tuberculosis , Vacinas contra a Tuberculose , Tuberculose , Animais , Modelos Animais de Doenças , Cobaias , Tuberculose/prevenção & controle
4.
Sci Rep ; 11(1): 12417, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-34127755

RESUMO

A single intradermal vaccination with an antibiotic-less version of BCGΔBCG1419c given to guinea pigs conferred a significant improvement in outcome following a low dose aerosol exposure to M. tuberculosis compared to that provided by a single dose of BCG Pasteur. BCGΔBCG1419c was more attenuated than BCG in murine macrophages, athymic, BALB/c, and C57BL/6 mice. In guinea pigs, BCGΔBCG1419c was at least as attenuated as BCG and induced similar dermal reactivity to that of BCG. Vaccination of guinea pigs with BCGΔBCG1419c resulted in increased anti-PPD IgG compared with those receiving BCG. Guinea pigs vaccinated with BCGΔBCG1419c showed a significant reduction of M. tuberculosis replication in lungs and spleens compared with BCG, as well as a significant reduction of pulmonary and extrapulmonary tuberculosis (TB) pathology measured using pathology scores recorded at necropsy. Evaluation of cytokines produced in lungs of infected guinea pigs showed that BCGΔBCG1419c significantly reduced TNF-α and IL-17 compared with BCG-vaccinated animals, with no changes in IL-10. This work demonstrates a significantly improved protection against pulmonary and extrapulmonary TB provided by BCGΔBCG1419c in susceptible guinea pigs together with an increased safety compared with BCG in several models. These results support the continued development of BCGΔBCG1419c as an effective vaccine for TB.


Assuntos
Vacina BCG/administração & dosagem , Mycobacterium tuberculosis/isolamento & purificação , Tuberculose/prevenção & controle , Vacinação/métodos , Animais , Vacina BCG/efeitos adversos , Vacina BCG/imunologia , Modelos Animais de Doenças , Feminino , Cobaias , Humanos , Imunogenicidade da Vacina , Injeções Intradérmicas , Pulmão/imunologia , Pulmão/microbiologia , Camundongos , Mycobacterium tuberculosis/imunologia , Células RAW 264.7 , Tuberculose/diagnóstico , Tuberculose/imunologia , Tuberculose/microbiologia
5.
Pathog Dis ; 76(4)2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29788125

RESUMO

There has been a significant reduction in annual tuberculosis incidence since the World Health Organization declared tuberculosis a global health threat. However, treatment of M. tuberculosis infections requires lengthy multidrug therapeutic regimens to achieve a durable cure. The development of new drugs that are active against resistant strains and phenotypically diverse organisms continues to present the greatest challenge in the future. Numerous phylogenomic analyses have revealed that the Mtb genome encodes a significantly expanded repertoire of toxin-antitoxin (TA) loci that makes up the Mtb TA system. A TA loci is a two-gene operon encoding a 'toxin' protein that inhibits bacterial growth and an interacting 'antitoxin' partner that neutralizes the inhibitory activity of the toxin. The presence of multiple chromosomally encoded TA loci in Mtb raises important questions in regard to expansion, regulation and function. Thus, the functional roles of TA loci in Mtb pathogenesis have received considerable attention over the last decade. The cumulative results indicate that they are involved in regulating adaptive responses to stresses associated with the host environment and drug treatment. Here we review the TA families encoded in Mtb, discuss the duplication of TA loci in Mtb, regulatory mechanism of TA loci, and phenotypic heterogeneity and pathogenesis.


Assuntos
Antitoxinas/genética , Toxinas Bacterianas/genética , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Mycobacterium tuberculosis/genética , Sistemas Toxina-Antitoxina , Antitoxinas/biossíntese , Toxinas Bacterianas/biossíntese , Duplicação Cromossômica , Heterogeneidade Genética , Loci Gênicos , Interações Hospedeiro-Patógeno , Humanos , Mycobacterium tuberculosis/classificação , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/patogenicidade , Óperon , Filogenia , Transdução de Sinais , Tuberculose/metabolismo , Tuberculose/microbiologia
6.
BMC Microbiol ; 13: 240, 2013 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-24172039

RESUMO

BACKGROUND: Molecular programs employed by Mycobacterium tuberculosis (Mtb) for the establishment of non-replicating persistence (NRP) are poorly understood. In order to investigate mechanisms regulating entry into NRP, we asked how cell cycle regulation is linked to downstream adaptations that ultimately result in NRP. Based on previous reports and our recent studies, we reason that, in order to establish NRP, cells are halted in the cell cycle at the point of septum formation by coupled regulatory mechanisms. RESULTS: Using bioinformatic consensus modeling, we identified an alternative cell cycle regulatory element, Soj(Mtb) encoded by rv1708. Soj(Mtb) coordinates a regulatory mechanism involving cell cycle control at the point of septum formation and elicits the induction of the MazF6 toxin. MazF6 functions as an mRNA interferase leading to bacteriostasis that can be prevented by interaction with its cognate antitoxin, MazE6. Further, MazEF6 acts independently of other Maz family toxin:antitoxin pairs. Notably, soj(Mtb) and mazEF6 transcripts where identified at 20, 40 and 100 days post-infection in increasing abundance indicating a role in adaption during chronic infection. CONCLUSIONS: Here we present the first evidence of a coupled regulatory system in which cell cycle regulation via Soj(Mtb) is linked to downstream adaptations that are facilitated through the activity of the MazEF6 TA pair.


Assuntos
Toxinas Bacterianas/metabolismo , Ciclo Celular , Regulação Bacteriana da Expressão Gênica , Mycobacterium tuberculosis/crescimento & desenvolvimento , Mycobacterium tuberculosis/genética , Sequência de Aminoácidos , Animais , Toxinas Bacterianas/genética , Feminino , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Varredura , Dados de Sequência Molecular , Mycobacterium tuberculosis/ultraestrutura , Alinhamento de Sequência
7.
Tuberculosis (Edinb) ; 93(1): 47-59, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23375378

RESUMO

The sequencing of complete genomes has accelerated biomedical research by providing information about the overall coding capacity of bacterial chromosomes. The original TB annotation resulted in putative functional assignment of ∼60% of the genes to specific metabolic functions, however, the other 40% of the encoded ORFs where annotated as conserved hypothetical proteins, hypothetical proteins or encoding proteins of unknown function. The TB research community is now at the beginning of the next phases of post-genomics; namely reannotation and functional characterization by targeted experimentation. Arguably, this is the most significant time for basic microbiology in recent history. To foster basic TB research, the Tuberculosis Community Annotation Project (TBCAP) jamboree exercise began the reannotation effort by providing additional information for previous annotations, and refining and substantiating the functional assignment of ORFs and genes within metabolic pathways. The overall goal of the TBCAP 2012 exercise was to gather and compile various data types and use this information with oversight from the scientific community to provide additional information to support the functional annotations of encoding genes. Another objective of this effort was to standardize the publicly accessible Mycobacterium tuberculosis reference sequence and its annotation. The greatest benefit of functional annotation information of genome sequence is that it fuels TB research for drug discovery, diagnostics, vaccine development and epidemiology.


Assuntos
Mycobacterium tuberculosis/metabolismo , Tuberculose/metabolismo , Proteínas da Membrana Bacteriana Externa/fisiologia , Biologia Computacional/métodos , Genes Bacterianos , Humanos , Redes e Vias Metabólicas/genética , Mycobacterium tuberculosis/genética , Fases de Leitura Aberta/genética
8.
PLoS One ; 6(12): e28830, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22205973

RESUMO

Farnesol is a key derivative in the sterol biosynthesis pathway in eukaryotic cells previously identified as a quorum sensing molecule in the human fungal pathogen Candida albicans. Recently, we demonstrated that above threshold concentrations, farnesol is capable of triggering apoptosis in C. albicans. However, the exact mechanism of farnesol cytotoxicity is not fully elucidated. Lipophilic compounds such as farnesol are known to conjugate with glutathione, an antioxidant crucial for cellular detoxification against damaging compounds. Glutathione conjugates act as substrates for ATP-dependent ABC transporters and are extruded from the cell. To that end, this current study was undertaken to validate the hypothesis that farnesol conjugation with intracellular glutathione coupled with Cdr1p-mediated extrusion of glutathione conjugates, results in total glutathione depletion, oxidative stress and ultimately fungal cell death. The combined findings demonstrated a significant decrease in intracellular glutathione levels concomitant with up-regulation of CDR1 and decreased cell viability. However, addition of exogenous reduced glutathione maintained intracellular glutathione levels and enhanced viability. In contrast, farnesol toxicity was decreased in a mutant lacking CDR1, whereas it was increased in a CDR1-overexpressing strain. Further, gene expression studies demonstrated significant up-regulation of the SOD genes, primary enzymes responsible for defense against oxidative stress, with no changes in expression in CDR1. This is the first study describing the involvement of Cdr1p-mediated glutathione efflux as a mechanism preceding the farnesol-induced apoptotic process in C. albicans. Understanding of the mechanisms underlying farnesol-cytotoxicity in C. albicans may lead to the development of this redox-cycling agent as an alternative antifungal agent.


Assuntos
Apoptose/efeitos dos fármacos , Candida albicans/citologia , Candida albicans/efeitos dos fármacos , Farneseno Álcool/farmacologia , Proteínas Fúngicas/metabolismo , Glutationa/metabolismo , Espaço Intracelular/efeitos dos fármacos , Proteínas de Membrana Transportadoras/metabolismo , Antifúngicos/farmacologia , Candida albicans/genética , Candida albicans/metabolismo , Caspases/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Dissulfeto de Glutationa/metabolismo , Homeostase/efeitos dos fármacos , Espaço Intracelular/metabolismo , Proteínas de Membrana Transportadoras/genética , Oxirredução/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Reprodutibilidade dos Testes , Superóxido Dismutase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...