Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38948801

RESUMO

Drugs of abuse activate defined neuronal ensembles in brain reward structures such as the nucleus accumbens (NAc), which are thought to promote the enduring synaptic, circuit, and behavioral consequences of drug exposure. While the molecular and cellular effects arising from experience with drugs like cocaine are increasingly well understood, the mechanisms that sculpt NAc ensemble participation are largely unknown. Here, we leveraged unbiased single-nucleus transcriptional profiling to identify expression of the secreted glycoprotein Reelin (encoded by the Reln gene) as a marker of cocaine-activated neuronal ensembles within the rat NAc. Multiplexed in situ detection confirmed selective expression of the immediate early gene Fos in Reln+ neurons after cocaine experience, and also revealed enrichment of Reln mRNA in Drd1 + medium spiny neurons (MSNs) in both the rat and human brain. Using a novel CRISPR interference strategy enabling selective Reln knockdown in the adult NAc, we observed altered expression of genes linked to calcium signaling, emergence of a transcriptional trajectory consistent with loss of cocaine sensitivity, and a striking decrease in MSN intrinsic excitability. At the behavioral level, loss of Reln prevented cocaine locomotor sensitization, abolished cocaine place preference memory, and decreased cocaine self-administration behavior. Together, these results identify Reelin as a critical mechanistic link between ensemble participation and cocaine-induced behavioral adaptations.

2.
Addict Neurosci ; 112024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38957401

RESUMO

Opioids produce addictive, analgesic, and euphoric effects via actions at mu opioid receptors (µORs). The µOR is encoded by the Oprm1 gene and is expressed in multiple brain regions that regulate reward and motivation, such as the nucleus accumbens (NAc). Oprm1 expression in NAc medium spiny neurons (MSNs) mediates opioid place preference, seeking, and consumption. However, recent single nucleus RNA sequencing (snRNA-seq) studies have revealed that multiple subpopulations of NAc neurons express Oprm1 mRNA, making it unclear which populations mediate diverse behaviors resulting from µOR activation. Using published snRNA-seq datasets from the rat NAc, we identified a novel population of MSNs that express the highest levels of Oprm1 of any NAc cell type. Here, we show that this population is selectively marked by expression of Chst9, a gene encoding a carbohydrate sulfotransferase. Notably, Chst9+ neurons exhibited more abundant expression of Oprm1 as compared to other cell types, and formed discrete cellular clusters along the medial and ventral borders of the NAc shell subregion. Moreover, CHST9 mRNA was also found to mark specific MSN populations in published human and primate snRNA-seq studies, indicating that this unique population may be conserved across species. Together, these results identify a spatially and transcriptionally distinct NAc neuron population characterized by the expression of Chst9. The abundant expression of Oprm1 in this population and the conservation of these cells across species suggests that they may play a key functional role in opioid response and identify this subpopulation as a target for further investigation.

3.
Hippocampus ; 34(5): 218-229, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38362938

RESUMO

Brain-derived neurotrophic factor (Bdnf) plays a critical role in brain development, dendritic growth, synaptic plasticity, as well as learning and memory. The rodent Bdnf gene contains nine 5' non-coding exons (I-IXa), which are spliced to a common 3' coding exon (IX). Transcription of individual Bdnf variants, which all encode the same BDNF protein, is initiated at unique promoters upstream of each non-coding exon, enabling precise spatiotemporal and activity-dependent regulation of Bdnf expression. Although prior evidence suggests that Bdnf transcripts containing exon I (Bdnf I) or exon IV (Bdnf IV) are uniquely regulated by neuronal activity, the functional significance of different Bdnf transcript variants remains unclear. To investigate functional roles of activity-dependent Bdnf I and IV transcripts, we used a CRISPR activation system in which catalytically dead Cas9 fused to a transcriptional activator (VPR) is targeted to individual Bdnf promoters with single guide RNAs, resulting in transcript-specific Bdnf upregulation. Bdnf I upregulation is associated with gene expression changes linked to dendritic growth, while Bdnf IV upregulation is associated with genes that regulate protein catabolism. Upregulation of Bdnf I, but not Bdnf IV, increased mushroom spine density, volume, length, and head diameter, and also produced more complex dendritic arbors in cultured rat hippocampal neurons. In contrast, upregulation of Bdnf IV, but not Bdnf I, in the rat hippocampus attenuated contextual fear expression. Our data suggest that while Bdnf I and IV are both activity-dependent, BDNF produced from these promoters may serve unique cellular, synaptic, and behavioral functions.

4.
Lancet Infect Dis ; 24(8): e495-e512, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38346436

RESUMO

Cryptococcosis is a major worldwide disseminated invasive fungal infection. Cryptococcosis, particularly in its most lethal manifestation of cryptococcal meningitis, accounts for substantial mortality and morbidity. The breadth of the clinical cryptococcosis syndromes, the different patient types at-risk and affected, and the vastly disparate resource settings where clinicians practice pose a complex array of challenges. Expert contributors from diverse regions of the world have collated data, reviewed the evidence, and provided insightful guideline recommendations for health practitioners across the globe. This guideline offers updated practical guidance and implementable recommendations on the clinical approaches, screening, diagnosis, management, and follow-up care of a patient with cryptococcosis and serves as a comprehensive synthesis of current evidence on cryptococcosis. This Review seeks to facilitate optimal clinical decision making on cryptococcosis and addresses the myriad of clinical complications by incorporating data from historical and contemporary clinical trials. This guideline is grounded on a set of core management principles, while acknowledging the practical challenges of antifungal access and resource limitations faced by many clinicians and patients. More than 70 societies internationally have endorsed the content, structure, evidence, recommendation, and pragmatic wisdom of this global cryptococcosis guideline to inform clinicians about the past, present, and future of care for a patient with cryptococcosis.


Assuntos
Antifúngicos , Criptococose , Humanos , Criptococose/diagnóstico , Criptococose/tratamento farmacológico , Antifúngicos/uso terapêutico , Guias de Prática Clínica como Assunto , Saúde Global , Meningite Criptocócica/diagnóstico , Meningite Criptocócica/tratamento farmacológico
5.
Neurotherapeutics ; 21(1): e00291, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38241154

RESUMO

Alzheimer's disease (AD) is the leading cause of dementia and lacks highly effective treatments. Tau-based therapies hold promise. Tau reduction prevents amyloid-ß-induced dysfunction in preclinical models of AD and also prevents amyloid-ß-independent dysfunction in diverse disease models, especially those with network hyperexcitability, suggesting that strategies exploiting the mechanisms underlying Tau reduction may extend beyond AD. Tau binds several SH3 domain-containing proteins implicated in AD via its central proline-rich domain. We previously used a peptide inhibitor to demonstrate that blocking Tau interactions with SH3 domain-containing proteins ameliorates amyloid-ß-induced dysfunction. Here, we identify a top hit from high-throughput screening for small molecules that inhibit Tau-FynSH3 interactions and describe its optimization with medicinal chemistry. The resulting lead compound is a potent cell-permeable Tau-SH3 interaction inhibitor that binds Tau and prevents amyloid-ß-induced dysfunction, including network hyperexcitability. These data support the potential of using small molecule Tau-SH3 interaction inhibitors as a novel therapeutic approach to AD.


Assuntos
Doença de Alzheimer , Proteínas tau , Humanos , Proteínas tau/metabolismo , Peptídeos beta-Amiloides/toxicidade , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Ensaios de Triagem em Larga Escala
6.
Nat Commun ; 15(1): 924, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38296965

RESUMO

Dimethyl fumarate (DMF) inhibits inflammasome-mediated inflammation and has been proposed as a treatment for patients hospitalised with COVID-19. This randomised, controlled, open-label platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing multiple treatments in patients hospitalised for COVID-19 (NCT04381936, ISRCTN50189673). In this assessment of DMF performed at 27 UK hospitals, adults were randomly allocated (1:1) to either usual standard of care alone or usual standard of care plus DMF. The primary outcome was clinical status on day 5 measured on a seven-point ordinal scale. Secondary outcomes were time to sustained improvement in clinical status, time to discharge, day 5 peripheral blood oxygenation, day 5 C-reactive protein, and improvement in day 10 clinical status. Between 2 March 2021 and 18 November 2021, 713 patients were enroled in the DMF evaluation, of whom 356 were randomly allocated to receive usual care plus DMF, and 357 to usual care alone. 95% of patients received corticosteroids as part of routine care. There was no evidence of a beneficial effect of DMF on clinical status at day 5 (common odds ratio of unfavourable outcome 1.12; 95% CI 0.86-1.47; p = 0.40). There was no significant effect of DMF on any secondary outcome.


Assuntos
COVID-19 , Adulto , Humanos , Fumarato de Dimetilo/uso terapêutico , SARS-CoV-2 , Hospitalização , Hospitais , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA