Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Oncotarget ; 11(44): 3921-3932, 2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33216841

RESUMO

While many resources exist for the drug screening of bladder cancer cell lines in 2D culture, it is widely recognized that screening in 3D culture is more representative of in vivo response. Importantly, signaling changes between 2D and 3D culture can result in changes to drug response. To address the need for 3D drug screening of bladder cancer cell lines, we screened 17 bladder cancer cell lines using a library of 652 investigational small-molecules and 3 clinically relevant drug combinations in 3D cell culture. Our goal was to identify compounds and classes of compounds with efficacy in bladder cancer. Utilizing established genomic and transcriptomic data for these bladder cancer cell lines, we correlated the genomic molecular parameters with drug response, to identify potentially novel groups of tumors that are vulnerable to specific drugs or classes of drugs. Importantly, we demonstrate that MEK inhibitors are a promising targeted therapy for the basal subtype of bladder cancer, and our data indicate that drug screening of 3D cultures provides an important resource for hypothesis generation.

2.
Lab Chip ; 20(3): 634-646, 2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-31922156

RESUMO

The human-derived orthotopic xenograft mouse model is an effective platform for performing in vivo bladder cancer studies to examine tumor development, metastasis, and therapeutic effects of drugs. To date, the surveillance of tumor progression in real time for orthotopic bladder xenografts is highly dependent on semi-quantitative in vivo imaging technologies such as bioluminescence. While these imaging technologies can estimate tumor progression, they are burdened with requirements such as anesthetics, specialized equipment, and genetic modification of the injected cell line. Thus, a convenient and non-invasive technology to quantitatively monitor the growth of bladder cancer in orthotopic xenografts is highly desired. In this work, using a microfluidic chemiluminescent ELISA platform, we have successfully developed a rapid, multiparameter urine-based and non-invasive biomolecular prognostic technology for orthotopic bladder cancer xenografts. This method consists of two steps. First, the concentrations of a panel of four urinary biomarkers are quantified from the urine of mice bearing orthotopic bladder xenografts. Second, machine learning and principal component analysis (PCA) algorithms are applied to analyze the urinary biomarkers, and subsequently, a score is assigned to indicate the tumor growth. With this methodology, we have quantitatively monitored the orthotopic growth of human bladder cancer that was inoculated with low, medium, and high cancer cell numbers. We also employed this method and performed a proof of principle experiment to examine the in vivo therapeutic efficacy of the EGFR inhibitor, dacomitinib.


Assuntos
Neoplasias da Bexiga Urinária/urina , Animais , Linhagem Celular Tumoral , Ensaio de Imunoadsorção Enzimática , Humanos , Dispositivos Lab-On-A-Chip , Medições Luminescentes , Camundongos , Vigilância da População , Neoplasias da Bexiga Urinária/diagnóstico por imagem
3.
Oncogene ; 38(18): 3340-3354, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30643195

RESUMO

Basal subtype cancers are deadly malignancies but the molecular events driving tumor lethality are not completely understood. Ataxia-telangiectasia group D complementing gene (ATDC, also known as TRIM29), is highly expressed and drives tumor formation and invasion in human bladder cancers but the factor(s) regulating its expression in bladder cancer are unknown. Molecular subtyping of bladder cancer has identified an aggressive basal subtype, which shares molecular features of basal/squamous tumors arising in other organs and is defined by activation of a TP63-driven gene program. Here, we demonstrate that ATDC is linked with expression of TP63 and highly expressed in basal bladder cancers. We find that TP63 binds to transcriptional regulatory regions of ATDC and KRT14 directly, increasing their expression, and that ATDC and KRT14 execute a TP63-driven invasive program. In vivo, ATDC is required for TP63-induced bladder tumor invasion and metastasis. These results link TP63 and the basal gene expression program to ATDC and to aggressive tumor behavior. Defining ATDC as a molecular determinant of aggressive, basal cancers may lead to improved biomarkers and therapeutic approaches.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Invasividade Neoplásica/patologia , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/fisiologia , Humanos , Neoplasia de Células Basais/metabolismo , Neoplasia de Células Basais/patologia , Neoplasias de Células Escamosas/metabolismo , Neoplasias de Células Escamosas/patologia , Transcrição Gênica/fisiologia
4.
Nat Protoc ; 14(3): 738-755, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30683938

RESUMO

The invasion of bladder cancer into the sub-urothelial muscle and vasculature are key determinants leading to lethal metastatic progression. However, the molecular basis is poorly understood, partly because of the lack of uncomplicated and reliable models that recapitulate the biology of locally invasive disease. We developed a surgical grafting technique, characterized by a simple, rapid, reproducible and high-efficiency approach, to recapitulate the pathobiological events of human bladder cancer invasion in mice. This technique consists of a small laparotomy and direct implantation of human cancer cells into the bladder lumen. Unlike other protocols, it does not require debriding of the urothelial lining, injection into the bladder wall, specialized imaging equipment, bladder catheterization or costly surgical equipment. With minimal practice, the procedure can be executed in <10 min. Tumors develop with a high take rate, and most cell lines exhibit local invasion within 4 weeks of implantation.


Assuntos
Progressão da Doença , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/cirurgia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Animais , Modelos Animais de Doenças , Humanos , Camundongos Endogâmicos NOD , Camundongos SCID , Invasividade Neoplásica
5.
J Vis Exp ; (139)2018 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-30272657

RESUMO

Bladder cancer is a significant health problem. It is estimated that more than 16,000 people will die this year in the United States from bladder cancer. While 75% of bladder cancers are non-invasive and unlikely to metastasize, about 25% progress to an invasive growth pattern. Up to half of the patients with invasive cancers will develop lethal metastatic relapse. Thus, understanding the mechanism of invasive progression in bladder cancer is crucial to predict patient outcomes and prevent lethal metastases. In this article, we present a three-dimensional cancer invasion model which allows incorporation of tumor cells and stromal components to mimic in vivo conditions occurring in the bladder tumor microenvironment. This model provides the opportunity to observe the invasive process in real time using time-lapse imaging, interrogate the molecular pathways involved using confocal immunofluorescent imaging and screen compounds with the potential to block invasion. While this protocol focuses on bladder cancer, it is likely that similar methods could be used to examine invasion and motility in other tumor types as well.


Assuntos
Imageamento Tridimensional/métodos , Microambiente Tumoral/imunologia , Neoplasias da Bexiga Urinária/diagnóstico , Neoplasias da Bexiga Urinária/terapia , Linhagem Celular Tumoral , Proliferação de Células , Progressão da Doença , Humanos , Invasividade Neoplásica , Neoplasias da Bexiga Urinária/patologia
6.
Eur Urol ; 74(6): 741-753, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30033047

RESUMO

BACKGROUND: Integrated molecular profiling has identified intrinsic expression-based bladder cancer molecular subtypes. Despite frequent histological diversity, robustness of subtypes in paired conventional (urothelial) and squamous components of the same bladder tumor has not been reported. OBJECTIVE: To assess the impact of histological heterogeneity on expression-based bladder cancer subtypes. DESIGN, SETTING, AND PARTICIPANTS: We performed clinically applicable, targeted DNA and/or RNA sequencing (multiplexed DNA and RNA sequencing [mxDNAseq and mxRNAseq, respectively]) on 112 formalin-fixed paraffin-embedded (FFPE) bladder cancer samples, including 12 cases with paired urothelial/squamous components and 21 bladder cancer cell lines. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Unsupervised hierarchical and consensus clustering of target gene expression enabled derivation of basal/luminal molecular subtyping. RESULTS AND LIMITATION: Across 21 bladder cancer cell lines, our custom mxRNAseq panel was highly concordant with whole transcriptome sequencing, and assessed targets robustly determined expression-based basal/luminal subtypes from The Cancer Genome Atlas data (in silico) and internally sequenced FFPE tissues. Frequent deleterious TP53 (56%) and activating hotspot PIK3CA (30%) somatic mutations were seen across 69 high-quality tissue samples. Potentially targetable focal ERBB2 (6%) or EGFR (6%) amplifications were also identified, and a novel subgene copy-number detection approach is described. Combined DNA/RNA analysis showed that focally amplified samples exhibit outlier EGFR and ERBB2 expression distinct from subtype-intrinsic profiles. Critically, paired urothelial and squamous components showed divergent basal/luminal status in three of 12 cases (25%), despite identical putatively clonal prioritized somatic genomic alterations. Limitations include lack of profiled paired normal tissues for formal somatic alteration determination, and the need for formal analytical and clinical validation. CONCLUSIONS: Our results support the feasibility of clinically relevant integrative bladder cancer profiling and challenge the intrinsic nature of expression subtypes in histologically diverse bladder cancers. PATIENT SUMMARY: A targeted RNA sequencing assay is capable of assessing gene expression-based subtypes in individual components of clinical bladder cancer tissue specimens. Different histological components of the same tumor may yield divergent expression profiles, suggesting that expression-based subtypes should be interpreted with caution in heterogeneous cancers.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma de Células Escamosas/genética , DNA de Neoplasias/genética , Heterogeneidade Genética , RNA Neoplásico/genética , Neoplasias da Bexiga Urinária/genética , Bexiga Urinária/metabolismo , Urotélio/metabolismo , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Variações do Número de Cópias de DNA , Análise Mutacional de DNA , DNA de Neoplasias/metabolismo , Amplificação de Genes , Perfilação da Expressão Gênica/métodos , Predisposição Genética para Doença , Genoma Humano , Genômica/métodos , Humanos , Mutação , Fenótipo , Valor Preditivo dos Testes , RNA Neoplásico/metabolismo , Reprodutibilidade dos Testes , Análise de Sequência de RNA , Transcriptoma , Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia , Urotélio/patologia
7.
Bladder Cancer ; 4(1): 77-90, 2018 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-29430509

RESUMO

BACKGROUND: The HER family of proteins (EGFR, HER2, HER3 and HER4) have long been thought to be therapeutic targets for bladder cancer, but previous clinical trials targeting these proteins have been disappointing. Second generation agents may be more effective. OBJECTIVE: The aim of this study was to evaluate responses to two second-generation irreversible tyrosine kinase inhibitors, dacomitinib and afatinib, in bladder cancer cell lines. METHODS: Cell lines were characterized by targeted next generation DNA sequencing, RNA sequencing, western blotting and flow cytometry. Cell survival responses to dacomitinib or afatinib were determined using (3-[4,5-dimethylthioazol-2-yl]-2,5-diphenyl tetrazolium bromide) (MTT) or [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) and phenazine methosylfate (PMS) cell survival assays. RESULTS: Only two cell lines of 12 tested were sensitive to afatinib. Sensitivity to afatinib was significantly associated with mutation in either HER2 or HER3 (p < 0.05). The two cell lines sensitive to afatinib were also responsive to dacomitinib ralong with an additional 4 other cell lines out of 16 tested. No characteristic was associated with dacomitinib sensitivity. Molecular profiling demonstrated that only two genes were high in both afatinib and dacomitinib sensitive cells. Further rhigher expression of RAS pathway genes was noted for dacomitinib responsive cells. CONCLUSIONS: This study confirms that cell line screening can be useful in pre-clinical evaluation of targeted small molecule inhibitors and suggests that compounds with similar structure(s) and target(s) may have distinct sensitivity profiles. Further rcombinational targeting of additional molecularly relevant pathways may be important in enhancing responses to HER targeted agents in bladder cancer.

8.
Cancer Res ; 77(1): 74-85, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27793843

RESUMO

Activation of the EGF receptors EGFR (ErbB1) and HER2 (ErbB2) drives the progression of multiple cancer types through complex mechanisms that are still not fully understood. In this study, we report that HER2 expression is elevated in bone metastases of prostate cancer independently of gene amplification. An examination of HER2 and NF-κB receptor (RANK) coexpression revealed increased levels of both proteins in aggressive prostate tumors and metastatic deposits. Inhibiting HER2 expression in bone tumor xenografts reduced proliferation and RANK expression while maintaining EGFR expression. In examining the role of EGFR in tumor-initiating cells (TIC), we found that EGFR expression was required for primary and secondary sphere formation of prostate cancer cells. EGFR expression was also observed in circulating tumor cells (CTC) during prostate cancer metastasis. Dual inhibition of HER2 and EGFR resulted in significant inhibition of tumor xenograft growth, further supporting the significance of these receptors in prostate cancer progression. Overall, our results indicate that EGFR promotes survival of prostate TIC and CTC that metastasize to bone, whereas HER2 supports the growth of prostate cancer cells once they are established at metastatic sites. Cancer Res; 77(1); 74-85. ©2016 AACR.


Assuntos
Receptores ErbB/biossíntese , Invasividade Neoplásica/patologia , Neoplasias da Próstata/patologia , Receptor ErbB-2/biossíntese , Animais , Western Blotting , Neoplasias Ósseas/secundário , Linhagem Celular Tumoral , Progressão da Doença , Citometria de Fluxo , Xenoenxertos , Humanos , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Células Neoplásicas Circulantes/patologia , Células-Tronco Neoplásicas/patologia , Análise Serial de Tecidos , Regulação para Cima
9.
PLoS One ; 11(3): e0150138, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26930657

RESUMO

ADAM15 is a member of a family of catalytically active disintegrin membrane metalloproteinases that function as molecular signaling switches, shed membrane bound growth factors and/or cleave and inactivate cell adhesion molecules. Aberrant metalloproteinase function of ADAM15 may contribute to tumor progression through the release of growth factors or disruption of cell adhesion. In this study, we utilized human bladder cancer tissues and cell lines to evaluate the expression and function of ADAM15 in the progression of human bladder cancer. Examination of genome and transcriptome databases revealed that ADAM15 ranked in the top 5% of amplified genes and its mRNA was significantly overexpressed in invasive and metastatic bladder cancer compared to noninvasive disease. Immunostaining of a bladder tumor tissue array designed to evaluate disease progression revealed increased ADAM15 immunoreactivity associated with increasing cancer stage and exhibited significantly stronger staining in metastatic samples. About half of the invasive tumors and the majority of the metastatic cases exhibited high ADAM15 staining index, while all low grade and noninvasive cases exhibited negative or low staining. The knockdown of ADAM15 mRNA expression significantly inhibited bladder tumor cell migration and reduced the invasive capacity of bladder tumor cells through MatrigelTM and monolayers of vascular endothelium. The knockdown of ADAM15 in a human xenograft model of bladder cancer inhibited tumor growth by 45% compared to controls. Structural modeling of the catalytic domain led to the design of a novel ADAM15-specific sulfonamide inhibitor that demonstrated bioactivity and significantly reduced the viability of bladder cancer cells in vitro and in human bladder cancer xenografts. Taken together, the results revealed an undescribed role of ADAM15 in the invasion of human bladder cancer and suggested that the ADAM15 catalytic domain may represent a viable therapeutic target in patients with advanced disease.


Assuntos
Proteínas ADAM/metabolismo , Proteínas de Membrana/metabolismo , Metástase Neoplásica/patologia , Neoplasias da Bexiga Urinária/metabolismo , Proteínas ADAM/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Bases de Dados Genéticas , Progressão da Doença , Humanos , Proteínas de Membrana/genética , Metástase Neoplásica/genética , Estadiamento de Neoplasias , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia , Cicatrização/genética
10.
Cancer ; 120(17): 2684-93, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-24802654

RESUMO

BACKGROUND: Epidermal growth factor receptor overexpression is associated with poor outcomes in urothelial carcinoma (UC). Cetuximab (CTX) exhibited an antitumor effect in in vivo UC models. The efficacy of gemcitabine/cisplatin (GC) with or without CTX in patients with advanced UC was evaluated. METHODS: Patients with advanced UC, measurable disease, and adequate organ function were randomized 1:2 to cisplatin (70 mg/m(2) ) on day 1 plus gemcitabine (1000 mg/m(2) ) on days 1, 8, and 15 (arm A) or GC plus CTX (500 mg/m(2) ) on days 1 and 15 (arm B). The primary endpoint was the overall response rate. The secondary endpoints were the response duration, safety, progression-free survival, overall survival, determination of whether or not CTX sensitized nonresponders to GC, and exploratory biomarker analysis. The accrual targets were 27 and 54 patients for the 2 arms, respectively. The overall response rate was reported by arm with binomial confidence intervals (CIs). Kaplan-Meier methods were used for time-to-event endpoints. RESULTS: Eighty-eight eligible patients were randomized; 87 were toxicity-evaluable, and 85 were response-evaluable. The overall response rates were 57.1% for arm A (95% CI = 37%-76%) and 61.4% for arm B (95% CI = 48%-74%). The median progression-free survival times were 8.5 months for arm A (95% CI = 5.7-10.4 months) and 7.6 months for arm B (95% CI = 6.1-8.7 months). The median overall survival times were 17.4 months for arm A (95% CI = 12.8 months to unreached) and 14.3 months for arm B (95% CI = 11.6-22.2 months). The most common grade 3/grade 4 adverse events in both arms were myelosuppression and nausea. Thromboembolism, acneiform rash, fatigue, pain, hypersensitivity reactions, elevated transaminases, hyponatremia, and hypomagnesemia were more common in arm B; 3 grade 5 adverse events occurred in arm B. The presence of primary disease significantly correlated with thromboembolism. An increased soluble E-cadherin level after cycle 2 correlated with a higher risk of death. CONCLUSIONS: GC plus CTX was feasible but was associated with more adverse events and no improvements in outcomes.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma de Células de Transição/tratamento farmacológico , Neoplasias da Bexiga Urinária/tratamento farmacológico , Adulto , Idoso , Anticorpos Monoclonais Humanizados/administração & dosagem , Antígenos CD , Biomarcadores Tumorais/sangue , Caderinas/sangue , Carcinoma de Células de Transição/sangue , Carcinoma de Células de Transição/mortalidade , Carcinoma de Células de Transição/secundário , Cetuximab , Cisplatino/administração & dosagem , Desoxicitidina/administração & dosagem , Desoxicitidina/análogos & derivados , Intervalo Livre de Doença , Feminino , Humanos , Estimativa de Kaplan-Meier , Metástase Linfática , Masculino , Pessoa de Meia-Idade , Modelos de Riscos Proporcionais , Resultado do Tratamento , Neoplasias da Bexiga Urinária/sangue , Neoplasias da Bexiga Urinária/mortalidade , Neoplasias da Bexiga Urinária/patologia , Gencitabina
11.
Mol Med ; 19: 367-76, 2013 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-24166682

RESUMO

Members of the human epidermal growth factor receptor (HER) family play a significant role in bladder cancer progression and may underlie the development of chemotherapy resistance. Dacomitinib is an irreversible tyrosine kinase inhibitor with structural specificity for the catalytic domains of epidermal growth factor receptor (EGFR), HER2 and HER4 that has exhibited vigorous efficacy against other solid tumors. We evaluated the antitumor activity of dacomitinib in human bladder cancer cell lines expressing varying levels of HER family receptors. These cell lines also were established as bladder cancer xenografts in nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mice to assess dacomitinib activity in vivo. Significant cytotoxic and cytostatic effects were noted in cells expressing elevated levels of the dacomitinib target receptors with apoptosis and cell cycle arrest being the predominant mechanisms of antitumor activity. Cells expressing lower levels of HER receptors were much less sensitive to dacomitinib. Interestingly, dacomitinib was more active than either trastuzumab or cetuximab in vitro, and exhibited increased growth inhibition of bladder tumor xenografts compared with lapatinib. Pharmacodynamic effects of dacomitinib included decreased E-cadherin (E-cad) expression, reduction of EGFR and extracellular signal-regulated kinase (ERK) phosphorylation and reduced mitotic count. Dacomitinib also inhibited tumor growth in a chemotherapy-resistant xenograft and, when combined with chemotherapy in a sensitive xenograft, exhibited superior antitumor effects compared with individual treatments. Evaluation in xenograft-bearing mice revealed that this combination was broadly feasible and well tolerated. In conclusion, dacomitinib exhibited pronounced activity both as a single agent and when combined with chemotherapy in human bladder cancer models. Further investigation of dacomitinib in the preclinical and clinical trial settings is being pursued.


Assuntos
Antineoplásicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Quinazolinonas/uso terapêutico , Neoplasias da Bexiga Urinária/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Cisplatino/farmacologia , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Receptores ErbB/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Quinazolinonas/farmacologia , Distribuição Aleatória , Receptor ErbB-2/metabolismo , Receptor ErbB-4 , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
12.
Prostate ; 73(16): 1776-85, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24038143

RESUMO

BACKGROUND: Research on castration resistant prostate cancer (CRPC) has focused primarily on functional alterations of the androgen receptor (AR). However, little is known about the loss of AR gene expression itself and the possible contribution of AR negative cells to CRPC. METHODS: Human and murine prostate cancer tissue microarrays (TMAs) were evaluated with antibodies specific for E2F1, DNA methyltransferase 1 or AR. The human prostate cancer TMA consisted of clinical samples ranging from normal tissue to samples of metastatic disease. The murine TMA was comprised of benign, localized or metastatic prostate cancer acquired from TRAMP mice treated with castration and/or 5'-Aza-2'-deoxycytidine (5Aza). RESULTS: Immunohistochemical analysis revealed increased nuclear DNMT1 staining in localized PCa (P < 0.0001) and metastatic PCa (P < 0.0001) compared to normal tissue. Examination of specific diagnoses revealed that Gleason seven tumors exhibited greater nuclear DNMT1 staining than Gleason six tumors (P < 0.05) and that metastatic tissue exhibited greater levels of nuclear DNMT1 than Gleason seven tumors (P < 0.01). Evaluation of the murine tissue cores revealed that 8.2% and 8.1% of benign tissue cores stained positive for E2F1 and DNMT1 respectively, while 97.0% were AR positive. Conversely, 81% and 100% of tumors were positive for E2F1 and DNMT1 respectively. This was in stark contrast to only 18% of tumors positive for AR. Treatment of mice with 5Aza reduced DNMT1 staining by 30%, while AR increased by 27%. CONCLUSIONS: These findings demonstrate that the E2F1/DNMT1 inhibitory axis of AR transcription is activated during the emergence of CRPC.


Assuntos
DNA (Citosina-5-)-Metiltransferases/fisiologia , Fator de Transcrição E2F1/fisiologia , Neoplasias de Próstata Resistentes à Castração/fisiopatologia , Receptores Androgênicos/fisiologia , Transdução de Sinais/fisiologia , Animais , Castração , DNA (Citosina-5-)-Metiltransferase 1 , Modelos Animais de Doenças , Progressão da Doença , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Gradação de Tumores , Próstata/patologia , Próstata/fisiologia , Neoplasias de Próstata Resistentes à Castração/patologia , Análise Serial de Tecidos
13.
Cancer Res ; 73(5): 1635-46, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23442322

RESUMO

Although current breast cancer treatment guidelines limit the use of HER2-blocking agents to tumors with HER2 gene amplification, recent retrospective analyses suggest that a wider group of patients may benefit from this therapy. Using breast cancer cell lines, mouse xenograft models and matched human primary and metastatic tissues, we show that HER2 is selectively expressed in and regulates self-renewal of the cancer stem cell (CSC) population in estrogen receptor-positive (ER(+)), HER2(-) luminal breast cancers. Although trastuzumab had no effects on the growth of established luminal breast cancer mouse xenografts, administration after tumor inoculation blocked subsequent tumor growth. HER2 expression is increased in luminal tumors grown in mouse bone xenografts, as well as in bone metastases from patients with breast cancer as compared with matched primary tumors. Furthermore, this increase in HER2 protein expression was not due to gene amplification but rather was mediated by receptor activator of NF-κB (RANK)-ligand in the bone microenvironment. These studies suggest that the clinical efficacy of adjuvant trastuzumab may relate to the ability of this agent to target the CSC population in a process that does not require HER2 gene amplification. Furthermore, these studies support a CSC model in which maximal clinical benefit is achieved when CSC targeting agents are administered in the adjuvant setting. Cancer Res; 73(5); 1635-46. ©2012 AACR.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Neoplasias da Mama/genética , Genes erbB-2 , Células-Tronco Neoplásicas/metabolismo , Animais , Biomarcadores , Neoplasias Ósseas/secundário , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Amplificação de Genes , Humanos , Camundongos , Transplante de Neoplasias , Receptores de Estrogênio/metabolismo , Transplante Heterólogo , Trastuzumab
14.
Cell Signal ; 24(2): 532-538, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22024284

RESUMO

During the progression of prostate cancer, the epithelial adhesion molecule E-cadherin is cleaved from the cell surface by ADAM15 proteolytic processing, generating an extracellular 80kDa fragment referred to as soluble E-cadherin (sE-cad). Contrary to observations in cancer, the generation of sE-cad appears to correlate with ADAM10 activity in benign prostatic epithelium. The ADAM10-specific inhibitor INCB8765 and the ADAM10 prodomain inhibit the generation of sE-cad, as well as downstream signaling and cell proliferation. Addition of EGF or amphiregulin (AREG) to these untransformed cell lines increases the amount of sE-cad shed into the conditioned media, as well as sE-cad bound to EGFR. EGF-associated shedding appears to be mediated by ADAM10 as shRNA knockdown of ADAM10 results in reduced shedding of sE-cad. To examine the physiologic role of sE-cad on benign prostatic epithelium, we treated BPH-1 and large T immortalized prostate epithelial cells (PrEC) with an sE-cad chimera comprised of the human Fc domain of IgG(1), fused to the extracellular domains of E-cadherin (Fc-Ecad). The treatment of untransformed prostate epithelial cells with Fc-Ecad resulted in phosphorylation of EGFR and downstream signaling through ERK and increased cell proliferation. Pre-treating BPH-1 and PrEC cells with cetuximab, a therapeutic monoclonal antibody against EGFR, decreased the ability of Fc-Ecad to induce EGFR phosphorylation, downstream signaling, and proliferation. These data suggest that ADAM10-generated sE-cad may have a role in EGFR signaling independent of traditional EGFR ligands.


Assuntos
Proteínas ADAM/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Caderinas/biossíntese , Fator de Crescimento Epidérmico/farmacologia , Células Epiteliais/metabolismo , Receptores ErbB/metabolismo , Proteínas de Membrana/metabolismo , Próstata/metabolismo , Transdução de Sinais , Proteínas ADAM/antagonistas & inibidores , Proteínas ADAM/genética , Proteína ADAM10 , Anfirregulina , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/genética , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais Humanizados , Caderinas/metabolismo , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Cetuximab , Família de Proteínas EGF , Inibidores Enzimáticos/farmacologia , Células Epiteliais/citologia , Células Epiteliais/efeitos dos fármacos , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/genética , Expressão Gênica , Glicoproteínas/farmacologia , Humanos , Imunoglobulina G/genética , Imunoglobulina G/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Masculino , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Fosforilação/efeitos dos fármacos , Próstata/citologia , Próstata/efeitos dos fármacos , Ligação Proteica , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/farmacologia , Transdução de Sinais/efeitos dos fármacos , Solubilidade
15.
Front Biosci (Landmark Ed) ; 17(5): 1948-64, 2012 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-22201848

RESUMO

Epithelial (E)-cadherin is a homophilic adhesion molecule which is responsible for maintenance of baso-lateral cell adhesion and polarity. E-cadherin can be lost from the cell surface by proteolytic cleavage, resulting in the generation of an 80kDa fragment referred to a soluble E-cadherin (sE-cad). Although originally discovered in the conditioned media of breast cancer cells and later verified in the fluids of cancer patients, today sE-cad has been reported in patients with viral and bacterial infections, organ failure, and benign disease. The proteases implicated in this cleavage event include members of the disintegrin family (ADAM10 and 15), bacterial proteases (gingipains and BFT), cathepsins (B, L, S), matrix metalloproteases (MMP-2, 3, 7, 9, and 14), Kallikrein-7 (KLK7), and plasmin. Stimulus that induces sE-cad generation by ADAMs, MMPs, KLK7, and plasmin in vitro ranges from serum withdrawal to pro-inflammatory cytokines to growth factors. The cellular or physiologic consequences of sE-cad accumulation include the disruption of adherens junctions, cellular migration and invasion, induction of MMPs, as well as cell signaling, suggesting that sE-cad may contribute to disease progression.


Assuntos
Caderinas/metabolismo , Progressão da Doença , Animais , Humanos
16.
PLoS One ; 6(9): e25187, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21966451

RESUMO

Although androgen receptor (AR) function has been extensively studied, regulation of the AR gene itself has been much less characterized. In this study, we observed a dramatic reduction in the expression of androgen receptor mRNA and protein in hyperproliferative prostate epithelium of keratin 5 promoter driven E2F1 transgenic mice. To confirm an inhibitory function for E2F1 on AR transcription, we showed that E2F1 inhibited the transcription of endogenous AR mRNA, subsequent AR protein, and AR promoter activity in both human and mouse epithelial cells. E2F1 also inhibited androgen-stimulated activation of two AR target gene promoters. To elucidate the molecular mechanism of E2F-mediated inhibition of AR, we evaluated the effects of two functional E2F1 mutants on AR promoter activity and found that the transactivation domain appears to mediate E2F1 repression of the AR promoter. Because DNMT1 is a functional intermediate of E2F1 we examined DNMT1 function in AR repression. Repression of endogenous AR in normal human prostate epithelial cells was relieved by DNMT1 shRNA knock down. DNMT1 was shown to be physically associated within the AR minimal promoter located 22 bps from the transcription start site; however, methylation remained unchanged at the promoter regardless of DNMT1 expression. Taken together, our results suggest that DNMT1 operates either as a functional intermediary or in cooperation with E2F1 inhibiting AR gene expression in a methylation independent manner.


Assuntos
DNA (Citosina-5-)-Metiltransferases/metabolismo , Fator de Transcrição E2F1/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Northern Blotting , Western Blotting , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , DNA (Citosina-5-)-Metiltransferase 1 , DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA/efeitos dos fármacos , Metilação de DNA/genética , Fator de Transcrição E2F1/genética , Humanos , Metribolona/farmacologia , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas/efeitos dos fármacos , Regiões Promotoras Genéticas/genética
17.
Cardiovasc Res ; 87(2): 348-55, 2010 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-20189953

RESUMO

AIMS: Endothelial barrier dysfunction is a key event in the pathogenesis of vascular diseases associated with inflammation. ADAM (a disintegrin and metalloprotease) 15 has been shown to contribute to the development of vascular inflammation. However, its role in regulating endothelial barrier function is unknown. The aim of this study was to examine the effect of ADAM15 on endothelial permeability and its underlying mechanisms. METHODS AND RESULTS: By measuring albumin transendothelial flux and transendothelial electric resistance in cultured human umbilical vein endothelial cell monolayers, we found that depletion of ADAM15 expression via siRNA decreased endothelial permeability and attenuated thrombin-induced barrier dysfunction. In contrast, endothelial cells overexpressing either wild-type or catalytically dead mutant ADAM15 displayed a higher basal permeability and augmented hyperpermeability in response to thrombin. In addition, ADAM15 knockdown inhibited whereas ADAM15 overexpression promoted neutrophil transendothelial migration. Further molecular assays revealed that ADAM15 did not cleave vascular endothelial-cadherin or cause its degradation. However, overexpression of ADAM15 promoted extracellular signal-regulated kinase (ERK)1/2 phosphorylation in both non-stimulated and thrombin-stimulated endothelial cells in a protease activity-independent manner. Pharmacological inhibition of Src kinase or ERK activation reversed ADAM15-induced hyperpermeability and neutrophil transmigration. CONCLUSION: The data provide evidence for a novel function of ADAM15 in regulating endothelial barrier properties. The mechanisms of ADAM15-induced hyperpermeability involve Src/ERK1/2 signalling independent of junction molecule shedding.


Assuntos
Proteínas ADAM/metabolismo , Permeabilidade Capilar , Células Endoteliais/enzimologia , Migração e Rolagem de Leucócitos , Proteínas de Membrana/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Neutrófilos/enzimologia , Transdução de Sinais , Quinases da Família src/metabolismo , Proteínas ADAM/genética , Albuminas/metabolismo , Antígenos CD/metabolismo , Caderinas/metabolismo , Permeabilidade Capilar/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , Impedância Elétrica , Células Endoteliais/efeitos dos fármacos , Quinase 1 de Adesão Focal/metabolismo , Humanos , Migração e Rolagem de Leucócitos/efeitos dos fármacos , Proteínas de Membrana/genética , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Mutação , Neutrófilos/efeitos dos fármacos , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Interferência de RNA , Transdução de Sinais/efeitos dos fármacos , Trombina/metabolismo , Fatores de Tempo , Transfecção , Quinases da Família src/antagonistas & inibidores
18.
Curr Pharm Des ; 15(20): 2311-8, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19601833

RESUMO

ADAM15 is a widely expressed multi-domain protease that has been implicated in the pathogenesis of many human diseases. Given the diversity of the ADAM15 functional domains, this protease is thought to affect several important cellular processes, including cell adhesion, degradation of extracellular matrix components, and ectodomain shedding of membrane-bound growth factors that are intrinsic to cancer and various inflammatory conditions. The multiple levels by which the activity of ADAM15 can be regulated include signal transduction, modulation of catalytic function, spatial regulation, and post-translational modifications. Taken together, this multi-functional disintegrin protease not only offers a variety of potential targets for therapeutic intervention, but also represents an attractive target for pharmaceutical consideration due to its involvement in key cellular processes and various disease states. Modalities aimed at inhibiting protease activation, metalloproteinase activity, or integrin binding capability could prove beneficial for the treatment of cancer and inflammatory diseases.


Assuntos
Proteínas ADAM/efeitos dos fármacos , Inflamação/tratamento farmacológico , Proteínas de Membrana/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Humanos
19.
J Cell Biochem ; 106(6): 967-74, 2009 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-19229865

RESUMO

The metalloproteinase ADAM15 is a multi-domain disintegrin protease that is upregulated in a variety of human cancers. ADAM15 mRNA and protein levels are increased in prostate cancer and its expression is significantly increased during metastatic progression. It is likely that ADAM15 supports disease progression differentially through the action of its various functional domains. ADAM15 may downregulate adhesion of tumor cells to the extracellular matrix, reduce cell-cell adhesion, and promote metastasis through the activity of its disintegrin and metalloproteinase domains. Additionally, ADAM15 can influence cell signaling by shedding membrane-bound growth factors and other proteins that interact with receptor tyrosine kinases, leading to receptor activation. There is also evidence supporting a role for ADAM15 in angiogenesis and angioinvasion of tumor cells, which are critical for unrestrained tumor growth and metastatic spread. Given its diverse functions, ADAM15 may represent a pivotal regulatory component of tumor progression, an important target for therapeutic intervention, or emerge as a biomarker of disease progression.


Assuntos
Proteínas ADAM/metabolismo , Progressão da Doença , Proteínas de Membrana/metabolismo , Neoplasias da Próstata , Proteínas ADAM/genética , Animais , Adesão Celular/fisiologia , Matriz Extracelular/metabolismo , Humanos , Masculino , Proteínas de Membrana/genética , Metástase Neoplásica , Neovascularização Patológica , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/patologia , Transdução de Sinais/fisiologia
20.
J Biol Chem ; 283(26): 18393-401, 2008 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-18434311

RESUMO

The zinc-dependent disintegrin metalloproteinases (a disintegrin and metalloproteinases (ADAMs) have been implicated in several disease processes, including human cancer. Previously, we demonstrated that the expression of a catalytically active member of the ADAM family, ADAM15, is associated with the progression of prostate and breast cancer. The accumulation of the soluble ectodomain of E-cadherin in human serum has also been associated with the progression of prostate and breast cancer and is thought to be mediated by metalloproteinase shedding. Utilizing two complementary models, overexpression and stable short hairpin RNA-mediated knockdown of ADAM15 in breast cancer cells, we demonstrated that ADAM15 cleaves E-cadherin in response to growth factor deprivation. We also demonstrated that the extracellular shedding of E-cadherin was abrogated by a metalloproteinase inhibitor and through the introduction of a catalytically inactive mutation in ADAM15. We have made the novel observation that this soluble E-cadherin fragment was found in complex with the HER2 and HER3 receptors in breast cancer cells. These interactions appeared to stabilize HER2 heterodimerization with HER3 and induced receptor activation and signaling through the Erk pathway, supporting both cell migration and proliferation. In this study, we provide evidence that ADAM15 catalyzes the cleavage of E-cadherin to generate a soluble fragment that in turn binds to and stimulates ErbB receptor signaling.


Assuntos
Proteínas ADAM/química , Caderinas/química , Regulação Neoplásica da Expressão Gênica , Proteínas de Membrana/química , Receptor ErbB-2/metabolismo , Caderinas/metabolismo , Catálise , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Dimerização , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Ligação Proteica , Estrutura Terciária de Proteína , RNA/química , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...