Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Virol ; 96(7): e0185721, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35285688

RESUMO

Human papillomaviruses (HPVs) are nonenveloped double-stranded DNA viruses that utilize heparan sulfate proteoglycans (HSPGs) as initial attachment factors prior to cell entry and infection. While extensively characterized, the selective interaction between HPV and HSPGs is generally studied using standard in vitro conditions, which fail to account for the effects that media additives, such as fetal bovine serum (FBS), can have on viral binding. As environmental conditions and growth factors associated with wound healing are thought to play a role in natural HPV infection, we sought to investigate the effects that serum or platelet extracts could have on the binding and infectivity of HPV. Here, we demonstrate that high concentrations of FBS and human serum greatly inhibit HPV16 binding, and that for FBS, this effect results from the obstruction of cell surface HSPGs by serum-derived heparin-binding proteins (HBPs). Surprisingly, we found that under these conditions, HPV particles utilize 6O-sulfated chondroitin sulfate proteoglycans (CSPGs) as initial binding receptors prior to infection. These findings were corroborated by small interfering RNA (siRNA)-mediated knockdown experiments, as well as through a cancer cell line screen, where we identified a strong association between viral binding in high serum and the expression of chondroitin sulfate biosynthesis genes. Furthermore, HPV binding in the presence of human platelet lysate also demonstrated an increased dependance on CSPGs, suggesting a possible role for these receptor proteoglycans in active wound healing environments. Overall, this work highlights the significant influence that serum/platelet factors can have on virus binding and identifies CSPGs as alternative cell attachment receptors for HPV. IMPORTANCE Heparan sulfate proteoglycans (HSPGs) have previously been identified as primary attachment factors for the initial binding of human papillomaviruses (HPVs) prior to infection. Here, we demonstrate that in vitro, HPV binding to HSPGs is strongly dependent on the surrounding experimental conditions, including the concentration of fetal bovine serum (FBS). We found that high concentrations of FBS can block HSPG-binding sites and cause a dependence on 6O-sulfated chondroitin sulfate proteoglycans (CSPGs) as alternative initial viral receptors. Further, we demonstrate that use of a human-derived alternative to FBS, human platelet lysate, also occludes HSPG-dependent binding, causing a shift toward CSPGs for viral attachment. As HPV infection of basal epithelial cells is thought to occur at sites of microtrauma with exposure to high serum levels and platelet factors, these unexpected findings highlight a possible role for CSPGs as important cellular receptors for the binding and infectivity of HPV in vivo.


Assuntos
Proteoglicanas de Sulfatos de Condroitina , Papillomavirus Humano 16 , Infecções por Papillomavirus , Linhagem Celular Tumoral , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Proteoglicanas de Heparan Sulfato/metabolismo , Papillomavirus Humano 16/efeitos dos fármacos , Papillomavirus Humano 16/metabolismo , Humanos , Ligação Proteica , Soroalbumina Bovina/farmacologia
2.
J Virol ; 93(15)2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31092566

RESUMO

Infectious human papillomavirus 16 (HPV16) L1/L2 pseudovirions were found to remain largely intact during vesicular transport to the nucleus. By electron microscopy, capsids with a diameter of 50 nm were clearly visible within small vesicles attached to mitotic chromosomes and to a lesser extent within interphase nuclei, implying nuclear disassembly. By confocal analysis, it was determined that nuclear entry of assembled L1 is dependent upon the presence of the minor capsid protein, L2, but independent of encapsidated DNA. We also demonstrate that L1 nuclear localization and mitotic chromosome association can occur in vivo in the murine cervicovaginal challenge model of HPV16 infection. These findings challenge the prevailing concepts of PV uncoating and disassembly. More generally, they document that a largely intact viral capsid can enter the nucleus within a transport vesicle, establishing a novel mechanism by which a virus accesses the nuclear cellular machinery.IMPORTANCE Papillomaviruses (PVs) comprise a large family of nonenveloped DNA viruses that include HPV16, among other oncogenic types, the causative agents of cervical cancer. Delivery of the viral DNA into the host cell nucleus is necessary for establishment of infection. This was thought to occur via a subviral complex following uncoating of the larger viral capsid. In this study, we demonstrate that little disassembly of the PV capsid occurs prior to nuclear delivery. These surprising data reveal a previously unrecognized viral strategy to access the nuclear replication machinery. Understanding viral entry mechanisms not only increases our appreciation of basic cell biological pathways but also may lead to more effective antiviral interventions.


Assuntos
Proteínas do Capsídeo/metabolismo , Núcleo Celular/virologia , Papillomavirus Humano 16/fisiologia , Proteínas Oncogênicas Virais/metabolismo , Internalização do Vírus , Animais , Capsídeo/metabolismo , Capsídeo/ultraestrutura , Linhagem Celular , Modelos Animais de Doenças , Papillomavirus Humano 16/ultraestrutura , Humanos , Microscopia Eletrônica , Infecções por Papillomavirus/patologia , Infecções por Papillomavirus/virologia
3.
J Immunol ; 202(4): 1250-1264, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30635393

RESUMO

Recent insight into the mechanisms of induction of tissue-resident memory (TRM) CD8+ T cells (CD8+ TRM) enables the development of novel vaccine strategies against sexually transmitted infections. To maximize both systemic and genital intraepithelial CD8+ T cells against vaccine Ags, we assessed combinations of i.m. and intravaginal routes in heterologous prime-boost immunization regimens with unrelated viral vectors. Only i.m. prime followed by intravaginal boost induced concomitant strong systemic and intraepithelial genital-resident CD8+ T cell responses. Intravaginal boost with vectors expressing vaccine Ags was far superior to intravaginal instillation of CXCR3 chemokine receptor ligands or TLR 3, 7, and 9 agonists to recruit and increase the pool of cervicovaginal CD8+ TRM Transient Ag presentation increased trafficking of cognate and bystander circulating activated, but not naive, CD8+ T cells into the genital tract and induced in situ proliferation and differentiation of cognate CD8+ TRM Secondary genital CD8+ TRM were induced in the absence of CD4+ T cell help and shared a similar TCR repertoire with systemic CD8+ T cells. This prime-pull-amplify approach elicited systemic and genital CD8+ T cell responses against high-risk human papillomavirus type 16 E7 oncoprotein and conferred CD8-mediated protection to a vaccinia virus genital challenge. These results underscore the importance of the delivery route of nonreplicating vectors in prime-boost immunization to shape the tissue distribution of CD8+ T cell responses. In this context, the importance of local Ag presentation to elicit genital CD8+ TRM provides a rationale to develop novel vaccines against sexually transmitted infections and to treat human papillomavirus neoplasia.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Papillomavirus Humano 16/imunologia , Vacinas contra Papillomavirus/imunologia , Animais , Células HEK293 , Humanos , Camundongos , Camundongos Congênicos , Camundongos Endogâmicos C57BL , Vacinas contra Papillomavirus/genética , Vacinação
4.
Mol Ther Methods Clin Dev ; 5: 165-179, 2017 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-28497074

RESUMO

Papillomavirus capsids can package a wide variety of nonviral DNA plasmids and deliver the packaged genetic material to cells, making them attractive candidates for targeted gene delivery vehicles. However, the papillomavirus vectors generated by current methods are unlikely to be suitable for clinical applications. We have developed a chemically defined, cell-free, papillomavirus-based vector production system that allows the incorporation of purified plasmid DNA (pseudogenome) into high-titer papillomavirus L1/L2 capsids. We investigated the incorporation of several DNA forms into a variety of different papillomavirus types, including human and animal types. Our results show that papillomavirus capsids can package and transduce linear or circular DNA under defined conditions. Packaging and transduction efficiencies were surprisingly variable across capsid types, DNA forms, and assembly reaction conditions. The pseudoviruses produced by these methods are sensitive to the same entry inhibitors as cell-derived pseudovirions, including neutralizing antibodies and heparin. The papillomavirus vector production systems developed in this study generated as high as 1011 infectious units/mg of L1. The pseudoviruses were infectious both in vitro and in vivo and should be compatible with good manufacturing practice (GMP) requirements.

5.
J Virol ; 91(10)2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28250129

RESUMO

In this study, we report that gamma interferon (IFN-γ) treatment, but not IFN-α, -ß, or -λ treatment, dramatically decreased infection of human papillomavirus 16 (HPV16) pseudovirus (PsV). In a survey of 20 additional HPV and animal papillomavirus types, we found that many, but not all, PsV types were also inhibited by IFN-γ. Microscopic and biochemical analyses of HPV16 PsV determined that the antiviral effect was exerted at the level of endosomal processing of the incoming capsid and depended on the JAK2/STAT1 pathway. In contrast to infection in the absence of IFN-γ, where L1 proteolytic products are produced during endosomal capsid processing and L2/DNA complexes segregate from L1 in the late endosome and travel to the nucleus, IFN-γ treatment led to decreased L1 proteolysis and retention of L2 and the viral genome in the late endosome/lysosome. PsV sensitivity or resistance to IFN-γ treatment was mapped to the L2 protein, as determined with infectious hybrid PsV, in which the L1 protein was derived from an IFN-γ-sensitive HPV type and the L2 protein from an IFN-γ-insensitive type or vice versa.IMPORTANCE A subset of HPV are the causative agents of many human cancers, most notably cervical cancer. This work describes the inhibition of infection of multiple HPV types, including oncogenic types, by treatment with IFN-γ, an antiviral cytokine that is released from stimulated immune cells. Exposure of cells to IFN-γ has been shown to trigger the expression of proteins with broad antiviral effector functions, most of which act to prevent viral transcription or translation. Interestingly, in this study, we show that infection is blocked at the early step of virus entry into the host cell by retention of the minor capsid protein, L2, and the viral genome instead of trafficking into the nucleus. Thus, a novel antiviral mechanism for IFN-γ has been revealed.


Assuntos
Proteínas do Capsídeo/metabolismo , Papillomavirus Humano 16/fisiologia , Interferon gama/imunologia , Proteínas Oncogênicas Virais/metabolismo , Internalização do Vírus , Animais , Linhagem Celular , Endossomos , Genoma Viral , Células HEK293 , Humanos , Transporte Proteico
6.
J Virol ; 90(2): 1096-107, 2016 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-26559838

RESUMO

UNLABELLED: We have established a cell-free in vitro system to study human papillomavirus type 16 (HPV16) assembly, a poorly understood process. L1/L2 capsomers, obtained from the disassembly of virus-like particles (VLPs), were incubated with nuclear extracts to provide access to the range of cellular proteins that would be available during assembly within the host cell. Incorporation of a reporter plasmid "pseudogenome" was dependent on the presence of both nuclear extract and ATP. Unexpectedly, L1/L2 VLPs that were not disassembled prior to incubation with a reassembly mixture containing nuclear extract also encapsidated a reporter plasmid. As with HPV pseudoviruses (PsV) generated intracellularly, infection by cell-free particles assembled in vitro required the presence of L2 and was susceptible to the same biochemical inhibitors, implying the cell-free assembled particles use the infectious pathway previously described for HPV16 produced in cell culture. Using biochemical and electron microscopy analyses, we observed that, in the presence of nuclear extract, intact VLPs partially disassemble, providing a mechanistic explanation to how the exogenous plasmid was packaged by these particles. Further, we provide evidence that capsids containing an <8-kb pseudogenome are resistant to the disassembly/reassembly reaction. Our results suggest a novel size discrimination mechanism for papillomavirus genome packaging in which particles undergo iterative rounds of disassembly/reassembly, seemingly sampling DNA until a suitably sized DNA is encountered, resulting in the formation of a stable virion structure. IMPORTANCE: Little is known about papillomavirus assembly biology due to the difficulties in propagating virus in vitro. The cell-free assembly method established in this paper reveals a new mechanism for viral genome packaging and will provide a tractable system for further dissecting papillomavirus assembly. The knowledge gained will increase our understanding of virus-host interactions, help to identify new targets for antiviral therapy, and allow for the development of new gene delivery systems based on in vitro-generated papillomavirus vectors.


Assuntos
Proteínas do Capsídeo/metabolismo , DNA Viral/metabolismo , Genoma Viral , Papillomavirus Humano 16/fisiologia , Proteínas Oncogênicas Virais/metabolismo , Montagem de Vírus , Genes Reporter , Plasmídeos
7.
Virology ; 481: 79-94, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25771496

RESUMO

To understand and compare the mechanisms of murine and human PV infection, we examined pseudovirion binding and infection of the newly described MusPV1 using the murine cervicovaginal challenge model. These analyses revealed primary tissue interactions distinct from those previously described for HPV16. Unlike HPV16, MusPV1 bound basement membrane (BM) in an HSPG-independent manner. Nevertheless, subsequent HSPG interactions were critical. L2 antibodies or low doses of VLP antibodies, sufficient to prevent infection, did not lead to disassociation of the MusPV1 pseudovirions from the BM, in contrast to previous findings with HPV16. Similarly, furin inhibition did not lead to loss of MusPV1 from the BM. Therefore, phylogenetically distant PV types differ in their initial interactions with host attachment factors, but initiate their lifecycle on the acellular BM. Despite these differences, these distantly related PV types displayed similar intracellular trafficking patterns and susceptibilities to biochemical inhibition of infection.


Assuntos
Membrana Basal/metabolismo , Papillomavirus Humano 16/fisiologia , Papillomaviridae/fisiologia , Infecções por Papillomavirus/metabolismo , Infecções por Papillomavirus/veterinária , Receptores Virais/metabolismo , Doenças dos Roedores/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Proteoglicanas de Heparan Sulfato/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Papillomavirus/virologia , Doenças dos Roedores/virologia
8.
Methods Mol Biol ; 1249: 365-79, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25348320

RESUMO

Virtually all cervical cancers are caused by human papillomavirus infections. The efficient assembly of pseudovirus (PsV) particles incorporating a plasmid expressing a reporter gene has been an invaluable tool in the development of in vitro neutralization assays and in studies of the early mechanisms of viral entry in vitro. Here, we describe a mouse model of human papillomavirus PsV infection of the cervicovaginal epithelium that recapitulates the early events of papillomavirus infection in vivo.


Assuntos
Colo do Útero/virologia , Infecções por Papillomavirus/virologia , Vagina/virologia , Animais , Anticorpos Antivirais/imunologia , Capsídeo/metabolismo , Colo do Útero/patologia , DNA Viral/metabolismo , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Imunofluorescência , Dosagem de Genes , Genes Reporter , Genoma Viral , Humanos , Luciferases/metabolismo , Camundongos Endogâmicos BALB C , Mucosa/patologia , Mucosa/virologia , Papillomaviridae/genética , Papillomaviridae/imunologia , Infecções por Papillomavirus/imunologia , Infecções por Papillomavirus/patologia , Linfócitos T/metabolismo , Vagina/patologia , Vírion/metabolismo
9.
Papillomavirus Res ; 1: 74-89, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27398412

RESUMO

We report that during assembly of HPV16 pseudovirus (PsV) the minor capsid protein, L2, interacts with the host nucleolar protein nucleophosmin (NPM1/B23). Exogenously-expressed L2 colocalized with NPM1, a complex containing both proteins could be immunoprecipitated, and L2 could redirect to the nucleus NPM1 that was pharmacologically or genetically restricted to the cytoplasm. Coexpression of the major capsid protein, L1, prevented both the colocalization and the biochemical association, and L1 pentamers could displace L2 from L2/NPM1 complexes attached to a nuclear matrix. HPV16 PsV that was produced in a cell line with reduced NPM1 levels had significantly lower infectivity compared to PsV produced in the parental cell line, although the PsV preparations had comparable L1 and L2 ratios and levels of encapsidated DNA. The PsV produced in NPM1-deficient cells showed increased trypsin sensitivity and exhibited decreased L2 levels during endocytosis. These results suggest a critical role for NPM1 in establishing the correct interactions between L2 and L1 during HPV capsid assembly. A decrease in cellular levels of NPM1 results in the formation of seemingly normal, but unstable, capsids that result in a premature loss of L2, thus inhibiting successful infection. No role for NPM1 in HPV infectious entry was found.

10.
PLoS Pathog ; 10(8): e1004314, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25121947

RESUMO

The immunocytes that regulate papillomavirus infection and lesion development in humans and animals remain largely undefined. We found that immunocompetent mice with varying H-2 haplotypes displayed asymptomatic skin infection that produced L1 when challenged with 6×1010 MusPV1 virions, the recently identified domestic mouse papillomavirus (also designated "MmuPV1"), but were uniformly resistant to MusPV1-induced papillomatosis. Broad immunosuppression with cyclosporin A resulted in variable induction of papillomas after experimental infection with a similar dose, from robust in Cr:ORL SENCAR to none in C57BL/6 mice, with lesional outgrowth correlating with early viral gene expression and partly with reported strain-specific susceptibility to chemical carcinogens, but not with H-2 haplotype. Challenge with 1×1012 virions in the absence of immunosuppression induced small transient papillomas in Cr:ORL SENCAR but not in C57BL/6 mice. Antibody-induced depletion of CD3+ T cells permitted efficient virus replication and papilloma formation in both strains, providing experimental proof for the crucial role of T cells in controlling papillomavirus infection and associated disease. In Cr:ORL SENCAR mice, immunodepletion of either CD4+ or CD8+ T cells was sufficient for efficient infection and papillomatosis, although deletion of one subset did not inhibit the recruitment of the other subset to the infected epithelium. Thus, the functional cooperation of CD4+ and CD8+ T cells is required to protect this strain. In contrast, C57BL/6 mice required depletion of both CD4+ and CD8+ T cells for infection and papillomatosis, and separate CD4 knock-out and CD8 knock-out C57BL/6 were also resistant. Thus, in C57BL/6 mice, either CD4+ or CD8+ T cell-independent mechanisms exist that can protect this particular strain from MusPV1-associated disease. These findings may help to explain the diversity of pathological outcomes in immunocompetent humans after infection with a specific human papillomavirus genotype.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Suscetibilidade a Doenças/imunologia , Infecções por Papillomavirus/imunologia , Animais , Citometria de Fluxo , Imunofluorescência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos SENCAR , Camundongos Knockout , Papillomaviridae
11.
PLoS One ; 9(7): e101576, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24999962

RESUMO

Antibodies specific for neutralizing epitopes in either Human papillomavirus (HPV) capsid protein L1 or L2 can mediate protection from viral challenge and thus their accurate and sensitive measurement at high throughput is likely informative for monitoring response to prophylactic vaccination. Here we compare measurement of L1 and L2-specific neutralizing antibodies in human sera using the standard Pseudovirion-Based Neutralization Assay (L1-PBNA) with the newer Furin-Cleaved Pseudovirion-Based Neutralization Assay (FC-PBNA), a modification of the L1-PBNA intended to improve sensitivity towards L2-specific neutralizing antibodies without compromising assay of L1-specific responses. For detection of L1-specific neutralizing antibodies in human sera, the FC- PBNA and L1-PBNA assays showed similar sensitivity and a high level of correlation using WHO standard sera (n = 2), and sera from patients vaccinated with Gardasil (n = 30) or an experimental human papillomavirus type 16 (HPV16) L1 VLP vaccine (n = 70). The detection of L1-specific cross-neutralizing antibodies in these sera using pseudovirions of types phylogenetically-related to those targeted by the L1 virus-like particle (VLP) vaccines was also consistent between the two assays. However, for sera from patients (n = 17) vaccinated with an L2-based immunogen (TA-CIN), the FC-PBNA was more sensitive than the L1-PBNA in detecting L2-specific neutralizing antibodies. Further, the neutralizing antibody titers measured with the FC-PBNA correlated with those determined with the L2-PBNA, another modification of the L1-PBNA that spacio-temporally separates primary and secondary receptor engagement, as well as the protective titers measured using passive transfer studies in the murine genital-challenge model. In sum, the FC-PBNA provided sensitive measurement for both L1 VLP and L2-specific neutralizing antibody in human sera. Vaccination with TA-CIN elicits weak cross-protective antibody in a subset of patients, suggesting the need for an adjuvant.


Assuntos
Anticorpos Neutralizantes/sangue , Furina/metabolismo , Testes de Neutralização/métodos , Vacinas contra Papillomavirus/imunologia , Vacinas contra Papillomavirus/metabolismo , Vacinação , Vírion/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Especificidade de Anticorpos , Proteínas do Capsídeo/imunologia , Proteínas do Capsídeo/metabolismo , Vacina Quadrivalente Recombinante contra HPV tipos 6, 11, 16, 18 , Humanos , Testes de Neutralização/normas , Proteínas Oncogênicas Virais/imunologia , Proteínas Oncogênicas Virais/metabolismo , Papillomaviridae/imunologia , Proteólise , Padrões de Referência
12.
Vaccine ; 32(28): 3540-7, 2014 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-24780250

RESUMO

Genetically modified bacterial flagellin (Fla), a Toll-like receptor-5 (TLR5) ligand, was evaluated as a fusion partner for human papillomavirus (HPV) L2-based immunogens in two animal challenge models; either cutaneous inoculation of rabbits with HPV 'quasivirions' containing cottontail rabbit papillomavirus (CRPV) genomes that induce warts, or intra-vaginal inoculation of mice with HPV 'pseudovirions' encapsidating a luciferase reporter plasmid and measurement of bioluminescence to determine infectivity. An Escherichia coli production system was developed for flagellin-L2 (Fla-L2) fusions containing either monomeric HPV-16 L2 a.a. 11(×11-200) or oligomeric L2 comprising a fusion of the a.a. 11-88 peptides of five (Fla∼5×11-88) or eight (Fla∼8×11-88) genital HPV types. Immunogenicity and bioactivity of Fla-L2 constructs were assessed using an in vitro neutralization and cell-based TLR-5 binding assay, respectively. Efficacy was evaluated following active immunization of rabbits or mice administered 3 intramuscular doses of Fla-L2 recombinants without exogenous adjuvant, followed by challenge. In addition, passive immunization studies of naïve rabbits with serial dilutions of pooled immune sera were used to determine End-Point Protection Titers (EPPT) for each formulation against a broader spectrum of HPV quasivirions. Efficacy was assessed for up to 10 weeks on the basis of wart volume induced following challenge and results compared to licensed L1-VLP vaccines (Gardasil and Cervarix). Following active immunization at doses as low as 1 µg, Fla-L2 fusions afforded complete protection against infection (mice) and disease (rabbits) following either homologous or heterologous HPV challenge. Passive immunization with anti-L2 immune sera discriminated between the different vaccine candidates under evaluation, demonstrated the protective role of antibody and suggested the superiority of this oligomeric L2-TLR5 agonist fusion approach compared to L1-based vaccines in its ability to cross-protect against non-vaccine HPV types.


Assuntos
Antígenos Virais/imunologia , Proteção Cruzada , Flagelina/imunologia , Vacinas contra Papillomavirus/imunologia , Proteínas Estruturais Virais/imunologia , Animais , Anticorpos Antivirais/sangue , Formação de Anticorpos , Relação Dose-Resposta Imunológica , Feminino , Genótipo , Imunização Passiva , Camundongos , Testes de Neutralização , Papillomaviridae/classificação , Coelhos , Proteínas Recombinantes de Fusão/imunologia
13.
PLoS Pathog ; 10(5): e1004162, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24874089

RESUMO

A two-step, high-throughput RNAi silencing screen was used to identify host cell factors required during human papillomavirus type 16 (HPV16) infection. Analysis of validated hits implicated a cluster of mitotic genes and revealed a previously undetermined mechanism for import of the viral DNA (vDNA) into the nucleus. In interphase cells, viruses were endocytosed, routed to the perinuclear area, and uncoated, but the vDNA failed to be imported into the nucleus. Upon nuclear envelope perforation in interphase cells HPV16 infection occured. During mitosis, the vDNA and L2 associated with host cell chromatin on the metaphase plate. Hence, we propose that HPV16 requires nuclear envelope breakdown during mitosis for access of the vDNA to the nucleoplasm. The results accentuate the value of genes found by RNAi screens for investigation of viral infections. The list of cell functions required during HPV16 infection will, moreover, provide a resource for future virus-host cell interaction studies.


Assuntos
Papillomavirus Humano 16 , Mitose/fisiologia , Membrana Nuclear/metabolismo , Proteínas Oncogênicas Virais/genética , Interferência de RNA , Transporte Ativo do Núcleo Celular , Núcleo Celular/metabolismo , Células Cultivadas , DNA Viral/genética , Papillomavirus Humano 16/genética , Humanos
14.
Curr Opin Virol ; 4: 24-31, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24525291

RESUMO

Papillomaviruses enter basal cells of stratified epithelia. Assembly of new virions occurs in infected cells during terminal differentiation. This unique biology is reflected in the mechanism of entry. Extracellularly, the interaction of nonenveloped capsids with several host cell proteins, after binding, results in discrete conformational changes. Asynchronous internalization occurs over several hours by an endocytic mechanism related to, but distinct from macropinocytosis. Intracellular trafficking leads virions through the endosomal system, and from late endosomes to the trans-Golgi-network, before nuclear delivery. Here, we discuss the existing data with the aim to synthesize an integrated model of the stepwise process of entry, thereby highlighting key open questions. Additionally, we relate data from experiments with cultured cells to in vivo results.


Assuntos
Endocitose , Papillomaviridae/fisiologia , Internalização do Vírus , Humanos
15.
J Virol ; 87(24): 13214-25, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24067981

RESUMO

Full-length genomic DNA of the recently identified laboratory mouse papillomavirus 1 (MusPV1) was synthesized in vitro and was used to establish and characterize a mouse model of papillomavirus pathobiology. MusPV1 DNA, whether naked or encapsidated by MusPV1 or human papillomavirus 16 (HPV 16) capsids, efficiently induced the outgrowth of papillomas as early as 3 weeks after application to abraded skin on the muzzles and tails of athymic NCr nude mice. High concentrations of virions were extracted from homogenized papillomatous tissues and were serially passaged for >10 generations. Neutralization by L1 antisera confirmed that infectious transmission was capsid mediated. Unexpectedly, the skin of the murine back was much less susceptible to virion-induced papillomas than the muzzle or tail. Although reporter pseudovirions readily transduced the skin of the back, infection with native MusPV1 resulted in less viral genome amplification and gene expression on the back, including reduced expression of the L1 protein and very low expression of the L2 protein, results that imply skin region-specific control of postentry aspects of the viral life cycle. Unexpectedly, L1 protein on the back was predominantly cytoplasmic, while on the tail the abundant L1 was cytoplasmic in the lower epithelial layers and nuclear in the upper layers. Nuclear localization of L1 occurred only in cells that coexpressed the minor capsid protein, L2. The pattern of L1 protein staining in the infected epithelium suggests that L1 expression occurs earlier in the MusPV1 life cycle than in the life cycle of high-risk HPV and that virion assembly is regulated by a previously undescribed mechanism.


Assuntos
Proteínas do Capsídeo/metabolismo , Regulação Viral da Expressão Gênica , Papillomaviridae/metabolismo , Infecções por Papillomavirus/veterinária , Doenças dos Roedores/virologia , Animais , Proteínas do Capsídeo/genética , Núcleo Celular/virologia , Citoplasma/virologia , Feminino , Camundongos/virologia , Camundongos Nus , Papillomaviridae/genética , Infecções por Papillomavirus/virologia , Transporte Proteico , Coelhos , Ratos , Ratos Sprague-Dawley
16.
Virology ; 445(1-2): 169-74, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23800545

RESUMO

The elegant icosahedral surface of the papillomavirus virion is formed by a single protein called L1. Recombinant L1 proteins can spontaneously self-assemble into a highly immunogenic structure that closely mimics the natural surface of native papillomavirus virions. This has served as the basis for two highly successful vaccines against cancer-causing human papillomaviruses (HPVs). During the viral life cycle, the capsid must undergo a variety of conformational changes, allowing key functions including the encapsidation of the ~8 kb viral genomic DNA, maturation into a more stable state to survive transit between hosts, mediating attachment to new host cells, and finally releasing the viral DNA into the newly infected host cell. This brief review focuses on conserved sequence and structural features that underlie the functions of this remarkable protein.


Assuntos
Proteínas do Capsídeo/metabolismo , Genes Virais , Papillomavirus Humano 16/metabolismo , Proteínas Oncogênicas Virais/metabolismo , Sequência de Aminoácidos , Proteínas do Capsídeo/genética , Sequência Conservada , Proteoglicanas de Heparan Sulfato/metabolismo , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/fisiologia , Humanos , Proteínas Oncogênicas Virais/genética , Dobramento de Proteína , Mapeamento de Interação de Proteínas , Montagem de Vírus , Internalização do Vírus
17.
J Virol ; 87(7): 3862-70, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23345514

RESUMO

Human papillomavirus 16 (HPV16) enters its host cells by a process that most closely resembles macropinocytosis. Uncoating occurs during passage through the endosomal compartment, and the low pH encountered in this environment is essential for infection. Furin cleavage of the minor capsid protein, L2, and cyclophilin B-mediated separation of L2 and the viral genome from the major capsid protein, L1, are necessary for escape from the late endosome (LE). Following this exodus, L2 and the genome are found colocalized at the ND10 nuclear subdomain, which is essential for efficient pseudogenome expression. However, the route by which L2 and the genome traverse the intervening cytoplasm between these two subcellular compartments has not been determined. This study extends our understanding of this phase in PV entry in demonstrating the involvement of the Golgi complex. With confocal microscopic analyses involving 5-ethynyl-2'-deoxyuridine (EdU)-labeled pseudogenomes and antibodies to virion and cellular proteins, we found that the viral pseudogenome and L2 travel to the trans-Golgi network (TGN) following exit from the LE, while L1 is retained. This transit is dependent upon furin cleavage of L2 and can be prevented pharmacologically with either brefeldin A or golgicide A, inhibitors of anterograde and retrograde Golgi trafficking. Additionally, Rab9a and Rab7b were determined to be mediators of this transit, as expression of dominant negative versions of these proteins, but not Rab7a, significantly inhibited HPV16 pseudovirus infection.


Assuntos
Proteínas do Capsídeo/metabolismo , Papillomavirus Humano 16/fisiologia , Proteínas Oncogênicas Virais/metabolismo , Infecções por Papillomavirus/fisiopatologia , Internalização do Vírus , Rede trans-Golgi/fisiologia , Brefeldina A/farmacologia , Linhagem Celular , Desoxiuridina/análogos & derivados , Imunofluorescência , Furina/metabolismo , Humanos , Microscopia Confocal , Proteínas Nucleares/metabolismo , Transporte Proteico/efeitos dos fármacos , Transporte Proteico/fisiologia , Piridinas/farmacologia , Quinolinas/farmacologia , Proteínas rab de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7
18.
J Clin Invest ; 122(12): 4606-20, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23143305

RESUMO

The induction of persistent intraepithelial CD8+ T cell responses may be key to the development of vaccines against mucosally transmitted pathogens, particularly for sexually transmitted diseases. Here we investigated CD8+ T cell responses in the female mouse cervicovaginal mucosa after intravaginal immunization with human papillomavirus vectors (HPV pseudoviruses) that transiently expressed a model antigen, respiratory syncytial virus (RSV) M/M2, in cervicovaginal keratinocytes. An HPV intravaginal prime/boost with different HPV serotypes induced 10-fold more cervicovaginal antigen-specific CD8+ T cells than priming alone. Antigen-specific T cell numbers decreased only 2-fold after 6 months. Most genital antigen-specific CD8+ T cells were intra- or subepithelial, expressed αE-integrin CD103, produced IFN-γ and TNF-α, and displayed in vivo cytotoxicity. Using a sphingosine-1-phosphate analog (FTY720), we found that the primed CD8+ T cells proliferated in the cervicovaginal mucosa upon HPV intravaginal boost. Intravaginal HPV prime/boost reduced cervicovaginal viral titers 1,000-fold after intravaginal challenge with vaccinia virus expressing the CD8 epitope M2. In contrast, intramuscular prime/boost with an adenovirus type 5 vector induced a higher level of systemic CD8+ T cells but failed to induce intraepithelial CD103+CD8+ T cells or protect against recombinant vaccinia vaginal challenge. Thus, HPV vectors are attractive gene-delivery platforms for inducing durable intraepithelial cervicovaginal CD8+ T cell responses by promoting local proliferation and retention of primed antigen-specific CD8+ T cells.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Papillomavirus Humano 16/genética , Vacinas contra Papillomavirus/administração & dosagem , Vacinação , Administração Intravaginal , Animais , Antígenos Virais/biossíntese , Linfócitos T CD8-Positivos/metabolismo , Linfócitos T CD8-Positivos/fisiologia , Proliferação de Células , Citotoxicidade Imunológica , Feminino , Genes Reporter , Vetores Genéticos , Células HEK293 , Papillomavirus Humano 16/imunologia , Humanos , Imunização Secundária , Memória Imunológica , Interferon gama/metabolismo , Luciferases de Vaga-Lume/biossíntese , Luciferases de Vaga-Lume/genética , Linfonodos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Mucosa/imunologia , Mucosa/virologia , Vacinas contra Papillomavirus/genética , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vírus Sinciciais Respiratórios/imunologia , Baço/imunologia , Estatísticas não Paramétricas , Fator de Necrose Tumoral alfa/metabolismo , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vaccinia virus/genética , Vaccinia virus/imunologia , Vagina/imunologia , Vagina/virologia
19.
Virology ; 433(2): 385-94, 2012 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-22985477

RESUMO

Depending upon viral genotype, productive papillomavirus infection and disease display preferential tropism for cutaneous or mucosal stratified squamous epithelia, although the mechanisms are unclear. To investigate papillomavirus entry tropism, we used reporter pseudovirions based on various cutaneous and mucosal papillomavirus species, including the recently identified murine papillomavirus. Pseudovirus transduction of BALB/c mice was examined using an improved murine skin infection protocol and a previously developed cervicovaginal challenge model. In the skin, HPV5, HPV6, HPV16, BPV1 and MusPV1 pseudovirions preferentially transduced keratinocytes at sites of trauma, similar to the genital tract. Skin infection, visualized by in vivo imaging using a luciferase reporter gene, peaked between days 2-3 and rapidly diminished for all pseudovirion types. Murine cutaneous and genital tissues were similarily permissive for pseudovirions of HPV types 5, 6, 8, 16, 18, 26, 44, 45, 51, 58 and animal papillomaviruses BPV1 and MusPV1, implying that papillomavirus' tissue and host tropism is governed primarily by post-entry regulatory events in the mouse.


Assuntos
Papillomaviridae/classificação , Papillomaviridae/patogenicidade , Pele/virologia , Vagina/microbiologia , Animais , Modelos Animais de Doenças , Feminino , Genes Reporter , Humanos , Queratinócitos/virologia , Camundongos , Camundongos Endogâmicos BALB C , Mucosa/virologia , Especificidade de Órgãos , Papillomaviridae/genética , Infecções por Papillomavirus/virologia , Especificidade da Espécie , Vírion/classificação , Vírion/genética , Vírion/patogenicidade , Virulência
20.
Clin Vaccine Immunol ; 19(7): 1075-82, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22593236

RESUMO

Papillomavirus L2-based vaccines have generally induced low-level or undetectable neutralizing antibodies in standard in vitro assays yet typically protect well against in vivo experimental challenge in animal models. Herein we document that mice vaccinated with an L2 vaccine comprising a fusion protein of the L2 amino acids 11 to 88 of human papillomavirus type 16 (HPV16), HPV18, HPV1, HPV5, and HPV6 were uniformly protected from cervicovaginal challenge with HPV16 pseudovirus, but neutralizing antibodies against HPV16, -31, -33, -45, or -58 were rarely detected in their sera using a standard in vitro neutralization assay. To address this discrepancy, we developed a neutralization assay based on an in vitro infectivity mechanism that more closely mimics the in vivo infectious process, specifically by spaciotemporally separating primary and secondary receptor engagement and correspondingly by altering the timing of exposure of the dominant L2 cross-neutralizing epitopes to the antibodies. With the new assay, titers in the 100 to 10,000 range were measured for most sera, whereas undetectable neutralizing activities were observed with the standard assay. In vitro neutralizing titers measured in the serum of mice after passive transfer of rabbit L2 immune serum correlated with protection from cervicovaginal challenge of the mice. This "L2-based" in vitro neutralization assay should prove useful in critically evaluating the immunogenicity of L2 vaccine candidates in preclinical studies and future clinical trials.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Antígenos Virais/imunologia , Proteínas do Capsídeo/imunologia , Testes de Neutralização/métodos , Proteínas Oncogênicas Virais/imunologia , Vacinas contra Papillomavirus/imunologia , Animais , Modelos Animais de Doenças , Feminino , Imunização Passiva , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Papillomavirus/prevenção & controle , Coelhos , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...