Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Commun Biol ; 7(1): 1052, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39187646

RESUMO

Sex differences and age-related changes in the human heart at the tissue, cell, and molecular level have been well-documented and many may be relevant for cardiovascular disease. However, how molecular programs within individual cell types vary across individuals by age and sex remains poorly characterized. To better understand this variation, we performed single-nucleus combinatorial indexing (sci) ATAC- and RNA-Seq in human heart samples from nine donors. We identify hundreds of differentially expressed genes by age and sex and find epigenetic signatures of variation in ATAC-Seq data in this discovery cohort. We then scale up our single-cell RNA-Seq analysis by combining our data with five recently published single nucleus RNA-Seq datasets of healthy adult hearts. We find variation such as metabolic alterations by sex and immune changes by age in differential expression tests, as well as alterations in abundance of cardiomyocytes by sex and neurons with age. In addition, we compare our adult-derived ATAC-Seq profiles to analogous fetal cell types to identify putative developmental-stage-specific regulatory factors. Finally, we train predictive models of cell-type-specific RNA expression levels utilizing ATAC-Seq profiles to link distal regulatory sequences to promoters, quantifying the predictive value of a simple TF-to-expression regulatory grammar and identifying cell-type-specific TFs. Our analysis represents the largest single-cell analysis of cardiac variation by age and sex to date and provides a resource for further study of healthy cardiac variation and transcriptional regulation at single-cell resolution.


Assuntos
Cromatina , Análise de Célula Única , Humanos , Análise de Célula Única/métodos , Feminino , Masculino , Adulto , Cromatina/metabolismo , Cromatina/genética , Pessoa de Meia-Idade , Miocárdio/metabolismo , Miocárdio/citologia , Caracteres Sexuais , Idoso , Fatores Etários , Envelhecimento/genética , Fatores Sexuais , Adulto Jovem , Miócitos Cardíacos/metabolismo , Coração/crescimento & desenvolvimento
2.
Nat Cell Biol ; 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39164488

RESUMO

Gastruloids are a powerful in vitro model of early human development. However, although elongated and composed of all three germ layers, human gastruloids do not morphologically resemble post-implantation human embryos. Here we show that an early pulse of retinoic acid (RA), together with later Matrigel, robustly induces human gastruloids with posterior embryo-like morphological structures, including a neural tube flanked by segmented somites and diverse cell types, including neural crest, neural progenitors, renal progenitors and myocytes. Through in silico staging based on single-cell RNA sequencing, we find that human RA-gastruloids progress further than other human or mouse embryo models, aligning to E9.5 mouse and CS11 cynomolgus monkey embryos. We leverage chemical and genetic perturbations of RA-gastruloids to confirm that WNT and BMP signalling regulate somite formation and neural tube length in the human context, while transcription factors TBX6 and PAX3 underpin presomitic mesoderm and neural crest, respectively. Looking forward, RA-gastruloids are a robust, scalable model for decoding early human embryogenesis.

3.
bioRxiv ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39149271

RESUMO

Spatial genomic technologies include imaging- and sequencing-based methods (1-3). An emerging subcategory of sequencing-based methods relies on a surface coated with coordinate-associated DNA barcodes, which are leveraged to tag endogenous nucleic acids or cells in an overlaid tissue section (4-7). However, the physical registration of DNA barcodes to spatial coordinates is challenging, necessitating either high density printing of coordinate-specific oligonucleotides or in situ sequencing/probing of randomly deposited, oligonucleotide-bearing beads. As a consequence, the surface areas available to sequencing-based spatial genomic methods are constrained by the time, labor, cost, and instrumentation required to either print, synthesize or decode a coordinate-tagged surface. To address this challenge, we developed SCOPE (Spatial reConstruction via Oligonucleotide Proximity Encoding), an optics-free, DNA microscopy (8) inspired method. With SCOPE, the relative positions of randomly deposited beads on a 2D surface are inferred from the ex situ sequencing of chimeric molecules formed from diffusing "sender" and tethered "receiver" oligonucleotides. As a first proof-of-concept, we apply SCOPE to reconstruct an asymmetric "swoosh" shape resembling the Nike logo (16.75 × 9.25 mm). Next, we use a microarray printer to encode a "color" version of the Snellen eye chart for visual acuity (17.18 × 40.97 mm), and apply SCOPE to achieve optics-free reconstruction of individual letters. Although these are early demonstrations of the concept and much work remains to be done, we envision that the optics-free, sequencing-based quantitation of the molecular proximities of DNA barcodes will enable spatial genomics in constant experimental time, across fields of view and at resolutions that are determined by sequencing depth, bead size, and diffusion kinetics, rather than the limitations of optical instruments or microarray printers.

4.
Cell ; 187(10): 2411-2427.e25, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38608704

RESUMO

We set out to exhaustively characterize the impact of the cis-chromatin environment on prime editing, a precise genome engineering tool. Using a highly sensitive method for mapping the genomic locations of randomly integrated reporters, we discover massive position effects, exemplified by editing efficiencies ranging from ∼0% to 94% for an identical target site and edit. Position effects on prime editing efficiency are well predicted by chromatin marks, e.g., positively by H3K79me2 and negatively by H3K9me3. Next, we developed a multiplex perturbational framework to assess the interaction of trans-acting factors with the cis-chromatin environment on editing outcomes. Applying this framework to DNA repair factors, we identify HLTF as a context-dependent repressor of prime editing. Finally, several lines of evidence suggest that active transcriptional elongation enhances prime editing. Consistent with this, we show we can robustly decrease or increase the efficiency of prime editing by preceding it with CRISPR-mediated silencing or activation, respectively.


Assuntos
Sistemas CRISPR-Cas , Cromatina , Epigênese Genética , Edição de Genes , Humanos , Cromatina/metabolismo , Cromatina/genética , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Histonas/metabolismo , Fatores de Transcrição/metabolismo , Código das Histonas
5.
bioRxiv ; 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38405970

RESUMO

Embryonic organoids are emerging as powerful models for studying early mammalian development. For example, stem cell-derived 'gastruloids' form elongating structures containing all three germ layers1-4. However, although elongated, human gastruloids do not morphologically resemble post-implantation embryos. Here we show that a specific, discontinuous regimen of retinoic acid (RA) robustly induces human gastruloids with embryo-like morphological structures, including a neural tube and segmented somites. Single cell RNA-seq (sc-RNA-seq) further reveals that these human 'RA-gastruloids' contain more advanced cell types than conventional gastruloids, including neural crest cells, renal progenitor cells, skeletal muscle cells, and, rarely, neural progenitor cells. We apply a new approach to computationally stage human RA-gastruloids relative to somite-resolved mouse embryos, early human embryos and other gastruloid models, and find that the developmental stage of human RA-gastruloids is comparable to that of E9.5 mouse embryos, although some cell types show greater or lesser progression. We chemically perturb WNT and BMP signaling in human RA-gastruloids and find that these signaling pathways regulate somite patterning and neural tube length, respectively, while genetic perturbation of the transcription factors PAX3 and TBX6 markedly compromises the formation of neural crest and somites/renal cells, respectively. Human RA-gastruloids complement other embryonic organoids in serving as a simple, robust and screenable model for decoding early human embryogenesis.

6.
bioRxiv ; 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38405830

RESUMO

The functional consequences of structural variants (SVs) in mammalian genomes are challenging to study. This is due to several factors, including: 1) their numerical paucity relative to other forms of standing genetic variation such as single nucleotide variants (SNVs) and short insertions or deletions (indels); 2) the fact that a single SV can involve and potentially impact the function of more than one gene and/or cis regulatory element; and 3) the relative immaturity of methods to generate and map SVs, either randomly or in targeted fashion, in in vitro or in vivo model systems. Towards addressing these challenges, we developed Genome-Shuffle-seq, a straightforward method that enables the multiplex generation and mapping of several major forms of SVs (deletions, inversions, translocations) throughout a mammalian genome. Genome-Shuffle-seq is based on the integration of "shuffle cassettes" to the genome, wherein each shuffle cassette contains components that facilitate its site-specific recombination (SSR) with other integrated shuffle cassettes (via Cre-loxP), its mapping to a specific genomic location (via T7-mediated in vitro transcription or IVT), and its identification in single-cell RNA-seq (scRNA-seq) data (via T7-mediated in situ transcription or IST). In this proof-of-concept, we apply Genome-Shuffle-seq to induce and map thousands of genomic SVs in mouse embryonic stem cells (mESCs) in a single experiment. Induced SVs are rapidly depleted from the cellular population over time, possibly due to Cre-mediated toxicity and/or negative selection on the rearrangements themselves. Leveraging T7 IST of barcodes whose positions are already mapped, we further demonstrate that we can efficiently genotype which SVs are present in association with each of many single cell transcriptomes in scRNA-seq data. Finally, preliminary evidence suggests our method may be a powerful means of generating extrachromosomal circular DNAs (ecDNAs). Looking forward, we anticipate that Genome-Shuffle-seq may be broadly useful for the systematic exploration of the functional consequences of SVs on gene expression, the chromatin landscape, and 3D nuclear architecture. We further anticipate potential uses for in vitro modeling of ecDNAs, as well as in paving the path to a minimal mammalian genome.

7.
Nature ; 626(8001): 1084-1093, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38355799

RESUMO

The house mouse (Mus musculus) is an exceptional model system, combining genetic tractability with close evolutionary affinity to humans1,2. Mouse gestation lasts only 3 weeks, during which the genome orchestrates the astonishing transformation of a single-cell zygote into a free-living pup composed of more than 500 million cells. Here, to establish a global framework for exploring mammalian development, we applied optimized single-cell combinatorial indexing3 to profile the transcriptional states of 12.4 million nuclei from 83 embryos, precisely staged at 2- to 6-hour intervals spanning late gastrulation (embryonic day 8) to birth (postnatal day 0). From these data, we annotate hundreds of cell types and explore the ontogenesis of the posterior embryo during somitogenesis and of kidney, mesenchyme, retina and early neurons. We leverage the temporal resolution and sampling depth of these whole-embryo snapshots, together with published data4-8 from earlier timepoints, to construct a rooted tree of cell-type relationships that spans the entirety of prenatal development, from zygote to birth. Throughout this tree, we systematically nominate genes encoding transcription factors and other proteins as candidate drivers of the in vivo differentiation of hundreds of cell types. Remarkably, the most marked temporal shifts in cell states are observed within one hour of birth and presumably underlie the massive physiological adaptations that must accompany the successful transition of a mammalian fetus to life outside the womb.


Assuntos
Animais Recém-Nascidos , Embrião de Mamíferos , Desenvolvimento Embrionário , Gástrula , Análise de Célula Única , Imagem com Lapso de Tempo , Animais , Feminino , Camundongos , Gravidez , Animais Recém-Nascidos/embriologia , Animais Recém-Nascidos/genética , Diferenciação Celular/genética , Embrião de Mamíferos/citologia , Embrião de Mamíferos/embriologia , Desenvolvimento Embrionário/genética , Gástrula/citologia , Gástrula/embriologia , Gastrulação/genética , Rim/citologia , Rim/embriologia , Mesoderma/citologia , Mesoderma/enzimologia , Neurônios/citologia , Neurônios/metabolismo , Retina/citologia , Retina/embriologia , Somitos/citologia , Somitos/embriologia , Fatores de Tempo , Fatores de Transcrição/genética , Transcrição Gênica , Especificidade de Órgãos/genética
8.
Immunity ; 57(2): 271-286.e13, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38301652

RESUMO

The immune system encodes information about the severity of a pathogenic threat in the quantity and type of memory cells it forms. This encoding emerges from lymphocyte decisions to maintain or lose self-renewal and memory potential during a challenge. By tracking CD8+ T cells at the single-cell and clonal lineage level using time-resolved transcriptomics, quantitative live imaging, and an acute infection model, we find that T cells will maintain or lose memory potential early after antigen recognition. However, following pathogen clearance, T cells may regain memory potential if initially lost. Mechanistically, this flexibility is implemented by a stochastic cis-epigenetic switch that tunably and reversibly silences the memory regulator, TCF1, in response to stimulation. Mathematical modeling shows how this flexibility allows memory T cell numbers to scale robustly with pathogen virulence and immune response magnitudes. We propose that flexibility and stochasticity in cellular decisions ensure optimal immune responses against diverse threats.


Assuntos
Linfócitos T CD8-Positivos , Células T de Memória , Epigênese Genética , Células Clonais , Memória Imunológica , Diferenciação Celular
9.
BMC Genomics ; 24(1): 737, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38049719

RESUMO

Single-cell chromatin accessibility has emerged as a powerful means of understanding the epigenetic landscape of diverse tissues and cell types, but profiling cells from many independent specimens is challenging and costly. Here we describe a novel approach, sciPlex-ATAC-seq, which uses unmodified DNA oligos as sample-specific nuclear labels, enabling the concurrent profiling of chromatin accessibility within single nuclei from virtually unlimited specimens or experimental conditions. We first demonstrate our method with a chemical epigenomics screen, in which we identify drug-altered distal regulatory sites predictive of compound- and dose-dependent effects on transcription. We then analyze cell type-specific chromatin changes in PBMCs from multiple donors responding to synthetic and allogeneic immune stimulation. We quantify stimulation-altered immune cell compositions and isolate the unique effects of allogeneic stimulation on chromatin accessibility specific to T-lymphocytes. Finally, we observe that impaired global chromatin decondensation often coincides with chemical inhibition of allogeneic T-cell activation.


Assuntos
Cromatina , DNA , Cromatina/genética , DNA/genética , Sequenciamento de Cromatina por Imunoprecipitação , Análise de Sequência de DNA/métodos , Epigenômica/métodos
11.
Nature ; 622(7983): 584-593, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37369347

RESUMO

The human embryo undergoes morphogenetic transformations following implantation into the uterus, but our knowledge of this crucial stage is limited by the inability to observe the embryo in vivo. Models of the embryo derived from stem cells are important tools for interrogating developmental events and tissue-tissue crosstalk during these stages1. Here we establish a model of the human post-implantation embryo, a human embryoid, comprising embryonic and extraembryonic tissues. We combine two types of extraembryonic-like cell generated by overexpression of transcription factors with wild-type embryonic stem cells and promote their self-organization into structures that mimic several aspects of the post-implantation human embryo. These self-organized aggregates contain a pluripotent epiblast-like domain surrounded by extraembryonic-like tissues. Our functional studies demonstrate that the epiblast-like domain robustly differentiates into amnion, extraembryonic mesenchyme and primordial germ cell-like cells in response to bone morphogenetic protein cues. In addition, we identify an inhibitory role for SOX17 in the specification of anterior hypoblast-like cells2. Modulation of the subpopulations in the hypoblast-like compartment demonstrates that extraembryonic-like cells influence epiblast-like domain differentiation, highlighting functional tissue-tissue crosstalk. In conclusion, we present a modular, tractable, integrated3 model of the human embryo that will enable us to probe key questions of human post-implantation development, a critical window during which substantial numbers of pregnancies fail.


Assuntos
Implantação do Embrião , Embrião de Mamíferos , Desenvolvimento Embrionário , Modelos Biológicos , Células-Tronco Pluripotentes , Feminino , Humanos , Gravidez , Proteínas Morfogenéticas Ósseas , Diferenciação Celular , Embrião de Mamíferos/citologia , Embrião de Mamíferos/embriologia , Corpos Embrioides/citologia , Camadas Germinativas/citologia , Camadas Germinativas/embriologia , Células-Tronco Embrionárias Humanas/citologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Células-Tronco Pluripotentes/citologia
12.
Mol Syst Biol ; 19(6): e11517, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37154091

RESUMO

Recent advances in multiplexed single-cell transcriptomics experiments facilitate the high-throughput study of drug and genetic perturbations. However, an exhaustive exploration of the combinatorial perturbation space is experimentally unfeasible. Therefore, computational methods are needed to predict, interpret, and prioritize perturbations. Here, we present the compositional perturbation autoencoder (CPA), which combines the interpretability of linear models with the flexibility of deep-learning approaches for single-cell response modeling. CPA learns to in silico predict transcriptional perturbation response at the single-cell level for unseen dosages, cell types, time points, and species. Using newly generated single-cell drug combination data, we validate that CPA can predict unseen drug combinations while outperforming baseline models. Additionally, the architecture's modularity enables incorporating the chemical representation of the drugs, allowing the prediction of cellular response to completely unseen drugs. Furthermore, CPA is also applicable to genetic combinatorial screens. We demonstrate this by imputing in silico 5,329 missing combinations (97.6% of all possibilities) in a single-cell Perturb-seq experiment with diverse genetic interactions. We envision CPA will facilitate efficient experimental design and hypothesis generation by enabling in silico response prediction at the single-cell level and thus accelerate therapeutic applications using single-cell technologies.


Assuntos
Biologia Computacional , Perfilação da Expressão Gênica , Ensaios de Triagem em Larga Escala , Análise da Expressão Gênica de Célula Única
13.
bioRxiv ; 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37066300

RESUMO

The house mouse, Mus musculus, is an exceptional model system, combining genetic tractability with close homology to human biology. Gestation in mouse development lasts just under three weeks, a period during which its genome orchestrates the astonishing transformation of a single cell zygote into a free-living pup composed of >500 million cells. Towards a global framework for exploring mammalian development, we applied single cell combinatorial indexing (sci-*) to profile the transcriptional states of 12.4 million nuclei from 83 precisely staged embryos spanning late gastrulation (embryonic day 8 or E8) to birth (postnatal day 0 or P0), with 2-hr temporal resolution during somitogenesis, 6-hr resolution through to birth, and 20-min resolution during the immediate postpartum period. From these data (E8 to P0), we annotate dozens of trajectories and hundreds of cell types and perform deeper analyses of the unfolding of the posterior embryo during somitogenesis as well as the ontogenesis of the kidney, mesenchyme, retina, and early neurons. Finally, we leverage the depth and temporal resolution of these whole embryo snapshots, together with other published data, to construct and curate a rooted tree of cell type relationships that spans mouse development from zygote to pup. Throughout this tree, we systematically nominate sets of transcription factors (TFs) and other genes as candidate drivers of the in vivo differentiation of hundreds of mammalian cell types. Remarkably, the most dramatic shifts in transcriptional state are observed in a restricted set of cell types in the hours immediately following birth, and presumably underlie the massive changes in physiology that must accompany the successful transition of a placental mammal to extrauterine life.

14.
bioRxiv ; 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36945538

RESUMO

Single-cell chromatin accessibility has emerged as a powerful means of understanding the epigenetic landscape of diverse tissues and cell types, but profiling cells from many independent specimens is challenging and costly. Here we describe a novel approach, sciPlex-ATAC-seq, which uses unmodified DNA oligos as sample-specific nuclear labels, enabling the concurrent profiling of chromatin accessibility within single nuclei from virtually unlimited specimens or experimental conditions. We first demonstrate our method with a chemical epigenomics screen, in which we identify drug-altered distal regulatory sites predictive of compound- and dose-dependent effects on transcription. We then analyze cell type-specific chromatin changes in PBMCs from multiple donors responding to synthetic and allogeneic immune stimulation. We quantify stimulation-altered immune cell compositions and isolate the unique effects of allogeneic stimulation on chromatin accessibility specific to T-lymphocytes. Finally, we observe that impaired global chromatin decondensation often coincides with chemical inhibition of allogeneic T-cell activation.

15.
Science ; 377(6606): eabn5800, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35926038

RESUMO

Drosophila melanogaster is a powerful, long-standing model for metazoan development and gene regulation. We profiled chromatin accessibility in almost 1 million and gene expression in half a million nuclei from overlapping windows spanning the entirety of embryogenesis. Leveraging developmental asynchronicity within embryo collections, we applied deep neural networks to infer the age of each nucleus, resulting in continuous, multimodal views of molecular and cellular transitions in absolute time. We identify cell lineages; infer their developmental relationships; and link dynamic changes in enhancer usage, transcription factor (TF) expression, and the accessibility of TFs' cognate motifs. With these data, the dynamics of enhancer usage and gene expression can be explored within and across lineages at the scale of minutes, including for precise transitions like zygotic genome activation.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Animais , Linhagem da Célula/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Desenvolvimento Embrionário/genética , Elementos Facilitadores Genéticos , Redes Neurais de Computação , Análise de Célula Única
16.
Nature ; 608(7921): 98-107, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35794474

RESUMO

DNA is naturally well suited to serve as a digital medium for in vivo molecular recording. However, contemporary DNA-based memory devices are constrained in terms of the number of distinct 'symbols' that can be concurrently recorded and/or by a failure to capture the order in which events occur1. Here we describe DNA Typewriter, a general system for in vivo molecular recording that overcomes these and other limitations. For DNA Typewriter, the blank recording medium ('DNA Tape') consists of a tandem array of partial CRISPR-Cas9 target sites, with all but the first site truncated at their 5' ends and therefore inactive. Short insertional edits serve as symbols that record the identity of the prime editing guide RNA2 mediating the edit while also shifting the position of the 'type guide' by one unit along the DNA Tape, that is, sequential genome editing. In this proof of concept of DNA Typewriter, we demonstrate recording and decoding of thousands of symbols, complex event histories and short text messages; evaluate the performance of dozens of orthogonal tapes; and construct 'long tape' potentially capable of recording as many as 20 serial events. Finally, we leverage DNA Typewriter in conjunction with single-cell RNA-seq to reconstruct a monophyletic lineage of 3,257 cells and find that the Poisson-like accumulation of sequential edits to multicopy DNA tape can be maintained across at least 20 generations and 25 days of in vitro clonal expansion.


Assuntos
DNA , Edição de Genes , Genoma , Sistemas CRISPR-Cas/genética , DNA/genética , Edição de Genes/métodos , Genoma/genética , RNA Guia de Cinetoplastídeos/genética , RNA-Seq , Análise de Célula Única , Fatores de Tempo
17.
Nat Biotechnol ; 40(2): 218-226, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34650269

RESUMO

Current methods to delete genomic sequences are based on clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 and pairs of single-guide RNAs (sgRNAs), but can be inefficient and imprecise, with errors including small indels as well as unintended large deletions and more complex rearrangements. In the present study, we describe a prime editing-based method, PRIME-Del, which induces a deletion using a pair of prime editing sgRNAs (pegRNAs) that target opposite DNA strands, programming not only the sites that are nicked but also the outcome of the repair. PRIME-Del achieves markedly higher precision than CRISPR-Cas9 and sgRNA pairs in programming deletions up to 10 kb, with 1-30% editing efficiency. PRIME-Del can also be used to couple genomic deletions with short insertions, enabling deletions with junctions that do not fall at protospacer-adjacent motif sites. Finally, extended expression of prime editing components can substantially enhance efficiency without compromising precision. We anticipate that PRIME-Del will be broadly useful for precise, flexible programming of genomic deletions, epitope tagging and, potentially, programming genomic rearrangements.


Assuntos
Sistemas CRISPR-Cas , RNA Guia de Cinetoplastídeos , Sistemas CRISPR-Cas/genética , DNA/genética , Edição de Genes/métodos , Genoma , Genômica , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo
18.
Genome Res ; 31(10): 1952-1969, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33888511

RESUMO

Recently developed single-cell technologies allow researchers to characterize cell states at ever greater resolution and scale. Caenorhabditis elegans is a particularly tractable system for studying development, and recent single-cell RNA-seq studies characterized the gene expression patterns for nearly every cell type in the embryo and at the second larval stage (L2). Gene expression patterns give insight about gene function and into the biochemical state of different cell types; recent advances in other single-cell genomics technologies can now also characterize the regulatory context of the genome that gives rise to these gene expression levels at a single-cell resolution. To explore the regulatory DNA of individual cell types in C. elegans, we collected single-cell chromatin accessibility data using the sci-ATAC-seq assay in L2 larvae to match the available single-cell RNA-seq data set. By using a novel implementation of the latent Dirichlet allocation algorithm, we identify 37 clusters of cells that correspond to different cell types in the worm, providing new maps of putative cell type-specific gene regulatory sites, with promise for better understanding of cellular differentiation and gene regulation.


Assuntos
Caenorhabditis elegans , Cromatina , Animais , Caenorhabditis elegans/genética , Cromatina/genética , Sequenciamento de Cromatina por Imunoprecipitação , DNA/genética , Regulação da Expressão Gênica
19.
Science ; 370(6518)2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-33184180

RESUMO

The chromatin landscape underlying the specification of human cell types is of fundamental interest. We generated human cell atlases of chromatin accessibility and gene expression in fetal tissues. For chromatin accessibility, we devised a three-level combinatorial indexing assay and applied it to 53 samples representing 15 organs, profiling ~800,000 single cells. We leveraged cell types defined by gene expression to annotate these data and cataloged hundreds of thousands of candidate regulatory elements that exhibit cell type-specific chromatin accessibility. We investigated the properties of lineage-specific transcription factors (such as POU2F1 in neurons), organ-specific specializations of broadly distributed cell types (such as blood and endothelial), and cell type-specific enrichments of complex trait heritability. These data represent a rich resource for the exploration of in vivo human gene regulation in diverse tissues and cell types.


Assuntos
Cromatina/metabolismo , Feto/citologia , Feto/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Análise de Célula Única , Atlas como Assunto , Humanos , Neurônios/metabolismo , Fatores de Transcrição/metabolismo
20.
Science ; 370(6518)2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-33184181

RESUMO

The gene expression program underlying the specification of human cell types is of fundamental interest. We generated human cell atlases of gene expression and chromatin accessibility in fetal tissues. For gene expression, we applied three-level combinatorial indexing to >110 samples representing 15 organs, ultimately profiling ~4 million single cells. We leveraged the literature and other atlases to identify and annotate hundreds of cell types and subtypes, both within and across tissues. Our analyses focused on organ-specific specializations of broadly distributed cell types (such as blood, endothelial, and epithelial), sites of fetal erythropoiesis (which notably included the adrenal gland), and integration with mouse developmental atlases (such as conserved specification of blood cells). These data represent a rich resource for the exploration of in vivo human gene expression in diverse tissues and cell types.


Assuntos
Cromatina/metabolismo , Feto/citologia , Feto/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Análise de Célula Única , Atlas como Assunto , Humanos , Neurônios/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA