Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Acoust Soc Am ; 146(4): 2540, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31671999

RESUMO

The dynamic equations of a transversely isotropic fibrous, highly porous material are presented in terms of microstructure-derived analytical expressions for viscous dissipation, and analytical expressions for the oscillatory heat transfer between the thermal fields of the solid cylindrical glassfibres and the surrounding viscous fluid. This represents the non-equilibrium thermal expansion of the fluid, occurring when waves propagate in the porous material, and results in a frequency-dependent scaling of the fluid dilatation term. A state-space transfer matrix solution of the governing equations has been introduced, allowing the numerical acoustical performance of the fibrous material to be investigated, including the acoustical effects of heat transfer. In order to understand the dissipation mechanisms of the viscous and thermal boundary layers on the surface of the fibres and the validity of the assumptions made in the current model, a thermoviscous acoustic fluid finite element procedure has also been introduced. The results from these simulations illustrate the frequency-dependent interaction of the boundary layers between neighbouring fibres in the porous material.

2.
J Acoust Soc Am ; 142(4): 2407, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29092615

RESUMO

A method to characterize macroscopically homogeneous rigid frame porous media from impedance tube measurements by deterministic and statistical inversion is presented. Equivalent density and bulk modulus of the samples are reconstructed with the scattering matrix formalism, and are then linked to its physical parameters via the Johnson-Champoux-Allard-Lafarge model. The model includes six parameters, namely the porosity, tortuosity, viscous and characteristic lengths, and static flow and thermal permeabilities. The parameters are estimated from the measurements in two ways. The first one is a deterministic procedure that finds the model parameters by minimizing a cost function in the least squares sense. The second approach is based on statistical inversion. It can be used to assess the validity of the least squares estimate, but also presents several advantages since it provides valuable information on the uncertainty and correlation between the parameters. Five porous samples with a range of pore properties are tested, and the pore parameter estimates given by the proposed inversion processes are compared to those given by other characterization methods. Joint parameter distributions are shown to demonstrate the correlations. Results show that the proposed methods find reliable parameter and uncertainty estimates to the six pore parameters quickly with minimal user input.

3.
J Acoust Soc Am ; 137(1): 273-80, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25618058

RESUMO

This paper studies the acoustical properties of hard-backed porous layers with periodically embedded air filled Helmholtz resonators. It is demonstrated that some enhancements in the acoustic absorption coefficient can be achieved in the viscous and inertial regimes at wavelengths much larger than the layer thickness. This enhancement is attributed to the excitation of two specific modes: Helmholtz resonance in the viscous regime and a trapped mode in the inertial regime. The enhancement in the absorption that is attributed to the Helmholtz resonance can be further improved when a small amount of porous material is removed from the resonator necks. In this way the frequency range in which these porous materials exhibit high values of the absorption coefficient can be extended by using Helmholtz resonators with a range of carefully tuned neck lengths.

4.
J Acoust Soc Am ; 136(3): 1139, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25190389

RESUMO

The absorption properties of a metaporous material made of non-resonant simple shape three-dimensional rigid inclusions (cube, cylinder, sphere, cone, and ring torus) embedded in a rigidly backed rigid-frame porous material are studied. A nearly total absorption can be obtained for a frequency lower than the quarter-wavelength resonance frequency due to the excitation of a trapped mode. To be correctly excited, this mode requires a filling fraction larger in three-dimensions than in two-dimensions for purely convex (cube, cylinder, sphere, and cone) shapes. At long wavelengths compared to the spatial period, a cube is found to be the best purely convex inclusion shape to embed in a cubic unit cell, while the embedment of a sphere or a cone cannot lead to an optimal absorption for some porous material properties and dimensions of the unit cell. At a fixed position of purely convex shape inclusion barycenter, the absorption coefficient only depends on the filling fraction and does not depend on the shape below the Bragg frequency arising from the interaction between the inclusion and its image with respect to the rigid backing. The influence of the incidence angle and of the material properties, namely, the flow resistivity is also shown. The results of the modeling are validated experimentally in the case of cubic and cylindrical inclusions.

5.
J Acoust Soc Am ; 133(2): 821-31, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23363101

RESUMO

This papers reports a three-dimensional (3D) extension of the model proposed by Groby et al. [J. Acoust. Soc. Am. 127, 2865-2874 (2010)]. The acoustic properties of a porous layer backed by a rigid plate with periodic rectangular irregularities are investigated. The Johnson-Champoux-Allard model is used to predict the complex bulk modulus and density of the equivalent fluid in the porous material. The method of variable separation is used together with the radiation conditions and Floquet theorem to derive the analytical expression for the acoustic reflection coefficient from the porous layer with 3D inhomogeneities. Finite element method is also used to validate the proposed analytical solution. The theoretical and numerical predictions agree well with the experimental data obtained from an impedance tube experiment. It is shown that the measured acoustic absorption coefficient spectrum exhibits a quasi-total absorption peak at the predicted frequency of the mode trapped in the porous layer. When more than one irregularity per spatial period is considered, additional absorption peaks are observed.


Assuntos
Acústica , Materiais de Construção , Arquitetura de Instituições de Saúde , Ruído/prevenção & controle , Absorção , Simulação por Computador , Análise de Elementos Finitos , Modelos Teóricos , Análise Numérica Assistida por Computador , Periodicidade , Porosidade , Reprodutibilidade dos Testes , Fatores de Tempo
6.
J Acoust Soc Am ; 134(6): 4670, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25669279

RESUMO

The aim of this work is to design a layer of porous material with a high value of the absorption coefficient in a wide range of frequencies. It is shown that low frequency performance can be significantly improved by embedding periodically arranged resonant inclusions (slotted cylinders) into the porous matrix. The dissipation of the acoustic energy in a porous material due to viscous and thermal losses inside the pores is enhanced by the low frequency resonances of the inclusions and energy trapping between the inclusion and the rigid backing. A parametric study is performed in order to determine the influence of the geometry and the arrangement of the inclusions embedded in a porous layer on the absorption coefficient. The experiments confirm that low frequency absorption coefficient of a composite material is significantly higher than that of the porous layer without the inclusions.

7.
J Acoust Soc Am ; 132(1): 208-15, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22779470

RESUMO

This work reports on an application of the state vector (Stroh) formalism and Peano series expansion to solve the problem of sound propagation in a material with continuous pore stratification. An alternative Biot formulation is used to link the equivalent velocity in the oscillatory flow in the material pores with the acoustic pressure gradient. In this formulation, the complex dynamic density and bulk modulus are predicted using the equivalent fluid flow model developed by Horoshenkov and Swift [J. Acoust. Soc. Am. 110(5), 2371-2378 (2001)] under the rigid frame approximation. This model is validated against experimental data obtained for a 140 mm thick material specimen with continuous pore size stratification and relatively constant porosity. This material has been produced from polyurethane binder solution placed in a container with a vented top and sealed bottom to achieve a gradient in the reaction time which caused a pore size stratification to develop as a function of depth [Mahasaranon et al., J. Appl. Phys. 111, 084901 (2012)]. It is shown that the acoustical properties of this class of materials can be accurately predicted with the adopted theoretical model.

8.
J Acoust Soc Am ; 132(1): 477-86, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22779494

RESUMO

Wave propagation in macroscopically inhomogeneous porous materials has received much attention in recent years. For planar configurations, the wave equation, derived from the alternative formulation of Biot's theory of 1962, was reduced and solved recently: first in the case of rigid frame inhomogeneous porous materials and then in the case of inhomogeneous poroelastic materials in the framework of Biot's theory. This paper focuses on the solution of the full wave equation in cylindrical coordinates for poroelastic tubes in which the acoustic and elastic properties of the poroelastic tube vary in the radial direction. The reflection coefficient is obtained numerically using the state vector (or the so-called Stroh) formalism and Peano series. This coefficient can then be used to straightforwardly calculate the scattered field. To validate the method of resolution, results obtained by the present method are compared to those calculated by the classical transfer matrix method in the case of a two-layer poroelastic tube. As an example, a long bone excited in the sagittal plane is considered. Finally, a discussion is given of ultrasonic time domain scattered field for various inhomogeneity profiles, which could lead to the prospect of long bone characterization.

9.
J Acoust Soc Am ; 131(6): 4292-303, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22712904

RESUMO

Experimental results are reported on second harmonic generation and self-action in a noncohesive granular medium supporting wave energy propagation both in the solid frame and in the saturating fluid. The acoustic transfer function of the probed granular slab can be separated into two main frequency regions: a low frequency region where the wave propagation is controlled by the solid skeleton elastic properties, and a higher frequency region where the behavior is dominantly due to the air saturating the beads. Experimental results agree well with a recently developed nonlinear Biot wave model applied to granular media. The linear transfer function, second harmonic generation, and self-action effect are studied as a function of bead diameter, compaction step, excitation amplitude, and frequency. This parametric study allows one to isolate different propagation regimes involving a range of described and interpreted linear and nonlinear processes that are encountered in granular media experiments. In particular, a theoretical interpretation is proposed for the observed strong self-action effect.

10.
J Acoust Soc Am ; 130(2): 818-25, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21877797

RESUMO

The modification of elastic properties of compressed acoustic foams is investigated. The porous sample is first submitted to a static compression and then to a dynamic excitation of smaller amplitude, corresponding to acoustical applications. The static compression induces the modification of the dynamic elastic parameters of the material. This work focuses on Young's modulus. The variation is measured with two different experimental methods: The classical rigidimeter and an absorption measurement. The effective Young's modulus is directly measured with the first method and is indirectly determined through the quarter-wave length resonance of the frame with the second one. The results of the two measurements are compared and give similar tendencies. The variation of the dynamic Young's modulus as a function of the degree of compression of the sample is shown to be separated in several zones. In the zones associated with weak compression (those usually zones encountered in practice), the variation of the effective Young's modulus can be approximated by a simple affine function. The results are compared for different foams. A simple model of the dependency of the Young's modulus with respect to the static degree of compression is finally proposed for weak compressions.


Assuntos
Acústica/instrumentação , Materiais de Construção , Arquitetura de Instituições de Saúde/instrumentação , Ruído/prevenção & controle , Absorção , Força Compressiva , Módulo de Elasticidade , Desenho de Equipamento , Modelos Teóricos , Porosidade , Estresse Mecânico , Vibração
11.
J Acoust Soc Am ; 130(3): 1390-8, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21895080

RESUMO

Wave propagation in macroscopically inhomogeneous porous materials has received much attention in recent years. The wave equation, derived from the alternative formulation of Biot's theory of 1962, was reduced and solved recently in the case of rigid frame inhomogeneous porous materials. This paper focuses on the solution of the full wave equation in which the acoustic and the elastic properties of the poroelastic material vary in one-dimension. The reflection coefficient of a one-dimensional macroscopically inhomogeneous porous material on a rigid backing is obtained numerically using the state vector (or the so-called Stroh) formalism and Peano series. This coefficient can then be used to straightforwardly calculate the scattered field. To validate the method of resolution, results obtained by the present method are compared to those calculated by the classical transfer matrix method at both normal and oblique incidence and to experimental measurements at normal incidence for a known two-layers porous material, considered as a single inhomogeneous layer. Finally, discussion about the absorption coefficient for various inhomogeneity profiles gives further perspectives.


Assuntos
Acústica , Materiais de Construção , Arquitetura de Instituições de Saúde , Modelos Teóricos , Som , Absorção , Simulação por Computador , Elasticidade , Desenho de Equipamento , Análise de Fourier , Modelos Lineares , Movimento (Física) , Análise Numérica Assistida por Computador , Porosidade , Pressão , Reprodutibilidade dos Testes
12.
J Acoust Soc Am ; 129(5): 3035-46, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21568407

RESUMO

The acoustic properties of a periodic rigid frame porous layer with multiple irregularities in the rigid backing and embedded rigid circular inclusions are investigated theoretically and numerically. The theoretical representation of the sound field in the structure is obtained using a combination of multipole method that accounts for the periodic inclusions and multi-modal method that accounts for the multiple irregularities of the rigid backing. The theoretical model is validated against a finite element method. The predictions show that the acoustic response of this structure exhibits quasi-total, high absorption peaks at low frequencies which are below the frequency of the quarter-wavelength resonance typical for a flat homogeneous porous layer backed by a rigid plate. This result is explained by excitation of additional modes in the porous layer and by a complex interaction between various acoustic modes. These modes relate to the resonances associated with the presence of a profiled rigid backing and rigid inclusions in the porous layer.

13.
J Acoust Soc Am ; 129(4): 1696-706, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21476627

RESUMO

The coupled mode (CM) and finite-element methods (FEMs) are developed and used to predict the acoustic reflection coefficient of a semi-infinite porous medium with closely spaced two-dimensional (2D) periodical corrugations. These methods are also applied to predict the reflection coefficient of a periodic array of porous corrugations installed on an acoustically rigid surface. It is shown that the predictions by the both methods agree closely. The reflection coefficient and Brewster angle of total refraction for the corrugated semi-infinite medium predicted with these methods are compared against that predicted by the Biot/Tolstoy/Howe/Twersky and extended Twersky models. A similar analysis is carried out for porous corrugations set on a rigid backing. The behavior of the reflection coefficient and the pole in the expression for the reflection coefficient located close to grazing incidence is studied.


Assuntos
Acústica , Análise de Elementos Finitos , Modelos Teóricos , Ruído , Porosidade , Propriedades de Superfície
14.
J Acoust Soc Am ; 130(6): 3771-80, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22225034

RESUMO

The acoustic properties of a porous sheet of medium static air flow resistivity (around 10,000 N m s(-4)), in which a periodic set of circular inclusions is embedded and which is backed by a rigid plate, are investigated. The inclusions and porous skeleton are assumed motionless. Such a structure behaves like a multi-component diffraction grating. Numerical results show that this structure presents a quasi-total (close to unity) absorption peak below the quarter-wavelength resonance of the porous sheet in absence of inclusions. This result is explained by the excitation of a complex trapped mode. When more than one inclusion per spatial period is considered, additional quasi-total absorption peaks are observed. The numerical results, as calculated with the help of the mode-matching method described in this paper, agree with those calculated using a finite element method.

15.
J Acoust Soc Am ; 125(2): 915-21, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19206868

RESUMO

A description of wave propagation in transversely isotropic porous materials saturated by air with a recent reformulation of the Biot theory is carried out. The description is performed in terms of a transfer matrix method (TMM). The anisotropy is taken into account in the mechanical parameters (elastic constants) and in the acoustical parameters (flow resistivity, tortuosity, and characteristic lengths). As an illustration, the normal surface impedance at normal and oblique incidences of transversely isotropic porous layers is predicted. Comparisons are performed with experimental results.


Assuntos
Acústica , Modelos Teóricos , Ruído/prevenção & controle , Acústica/instrumentação , Ar , Anisotropia , Elasticidade , Desenho de Equipamento , Porosidade , Reologia , Propriedades de Superfície
16.
J Acoust Soc Am ; 123(3): 1241-7, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18345813

RESUMO

Simulations performed for a typical semi-infinite reticulated plastic foam saturated by air show that, at distances less than three Rayleigh wavelengths from the area of mechanical excitation by a circular source, the normal frame velocity is close to the Rayleigh pole contribution. Simulated measurements show that a good order of magnitude estimate of the phase speed and damping can be obtained at small distances from the source. Simulations are also performed for layers of finite thickness, where the phase velocity and damping depend on frequency. They indicate that the normal frame velocity at small distances from the source is always close to the Rayleigh pole contribution and that a good order of magnitude estimate of the phase speed of the Rayleigh wave can be obtained at small distances from the source. Furthermore, simulations show that precise measurements of the damping of the Rayleigh wave need larger distances. Measurements performed on a layer of finite thickness confirm these trends.


Assuntos
Acústica , Ar , Modelos Teóricos , Porosidade , Aviação , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...