Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Chem ; 6(1): 246, 2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-37951991

RESUMO

The design of supramolecular networks based on organic molecules deposited on surfaces, is highly attractive for various applications. One of the remaining challenges is the expansion of monolayers to well-ordered multilayers in order to enhance the functionality and complexity of self-assemblies. In this study, we present an assessment of molecular conformation from 2D to 3D supramolecular networks adsorbed onto a HOPG surface under ambient conditions utilizing a combination of scanning probe microscopies and atomic force microscopy- infrared (AFM-IR). We have observed that the infrared (IR) spectra of the designed molecules vary from layer to layer due to the modifications in the dihedral angle between the C=O group and the neighboring phenyl ring, especially in the case of a 3D supramolecular network consisting of multiple layers of molecules.

2.
Science ; 379(6634): eabn9057, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36821663

RESUMO

Samples of the carbonaceous asteroid (162173) Ryugu were collected and brought to Earth by the Hayabusa2 spacecraft. We investigated the macromolecular organic matter in Ryugu samples and found that it contains aromatic and aliphatic carbon, ketone, and carboxyl functional groups. The spectroscopic features of the organic matter are consistent with those in chemically primitive carbonaceous chondrite meteorites that experienced parent-body aqueous alteration (reactions with liquid water). The morphology of the organic carbon includes nanoglobules and diffuse carbon associated with phyllosilicate and carbonate minerals. Deuterium and/or nitrogen-15 enrichments indicate that the organic matter formed in a cold molecular cloud or the presolar nebula. The diversity of the organic matter indicates variable levels of aqueous alteration on Ryugu's parent body.

3.
Anal Chem ; 95(2): 621-627, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36598929

RESUMO

Nanoscale infrared spectroscopy (AFMIR) is becoming an important tool for the analysis of biological sample, in particular protein assemblies, at the nanoscale level. While the amide I band is usually used to determine the secondary structure of proteins in Fourier transform infrared spectroscopy, no tool has been developed so far for AFMIR. The paper introduces a method for the study of secondary structure of protein based on a protein library of 38 well-characterized proteins. Ascending stepwise linear regression (ASLR) and partial least square (PLS) regression were used to correlate spectrum characteristic bands with the major secondary structures (α-helixes and ß-sheets). ASLR appears to provide better results than PLS. The secondary structure predictions are characterized by a root mean square standard error in a cross validation of 6.39% for α-helixes and 6.23% for ß-sheets.


Assuntos
Amidas , Proteínas , Proteínas/química , Estrutura Secundária de Proteína , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Análise dos Mínimos Quadrados , Amidas/química
4.
Anal Chem ; 95(2): 1505-1512, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36535897

RESUMO

In this work, we propose to evaluate and validate an emerging spectroscopic space-resolved technique: atomic force microscopy coupled with infrared spectroscopy (AFM-IR) for inorganic materials in tapping mode at the nanoscale. For this aim, a preliminary investigation of sample preparation techniques was done and the stability of tapping AFM-IR spectra was evaluated on reference samples [poly(methyl methacrylate) and silica]. It was concluded that for a homogeneous polymer, it is possible to compare AFM-IR spectra with conventional Fourier-transform infrared (FTIR) spectra obtained in transmission. When an inorganic solid is considered, AFM-IR spectra are different from the global FTIR spectrum which indicates that the AFM-IR technique probes a volume which is not representative of global composition, that is, the external surface layer. Moreover, local infrared spectra recorded in the tapping mode of the external surface are significantly different depending on the analyzed regions of the same particle and between particles of the amorphous silica, implying surface heterogeneity. The AFM-IR technique allows surface description of amorphous inorganic materials at the nanoscale and opens new frontiers in the characterization of functional nanoscale and crystalline materials.

5.
Analyst ; 147(23): 5564-5578, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36345881

RESUMO

Researchers are increasingly thinking smaller to solve some of the biggest challenges in nanomedicine: the control of drug encapsulation. Although recent years have witnessed a significant increase in the development and characterization of polymeric drug nanocarriers, several key features are still to be addressed: Where is the drug located within each nanoparticle (NP)? How much drug does each NP contain? Is the drug loading homogeneous on an individual NP basis? To answer these questions, individual NP characterization was achieved here by using atomic force microscopy-infrared spectroscopy (AFM-IR). A label-free quantification methodology was proposed to estimate with a nanoscale resolution the drug loadings of individual poly(lactic acid) (PLA) NPs loaded with an anticancer drug. First, a drug loading calibration curve was established using conventional IR microspectroscopy employing PLA/drug homogeneous films of well-known compositions. Then, single NPs were investigated by AFM-IR acquiring both IR mappings of PLA and drug as well as local IR spectra. Besides, drug location within single NPs was unravelled. The measured drug loadings were drastically different (0 to 21 wt%) from one NP to another, emphasizing the particular interest of this methodology in providing a simple quantification method for the quality control of nanomedicines.


Assuntos
Antineoplásicos , Nanopartículas , Nanopartículas/química , Poliésteres/química , Polímeros/química , Microscopia de Força Atômica , Portadores de Fármacos/química
6.
Pharmaceutics ; 13(12)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34959274

RESUMO

Vancomycin (VCM) is a last resort antibiotic in the treatment of severe Gram-positive infections. However, its administration is limited by several drawbacks such as: strong pH-dependent charge, tendency to aggregate, low bioavailability, and poor cellular uptake. These drawbacks were circumvented by engineering pH-responsive nanoparticles (NPs) capable to incorporate high VCM payload and deliver it specifically at slightly acidic pH corresponding to infection sites. Taking advantage of peculiar physicochemical properties of VCM, here we show how to incorporate VCM efficiently in biodegradable NPs made of poly(lactic-co-glycolic acid) and polylactic acid (co)polymers. The NPs were prepared by a simple and reproducible method, establishing strong electrostatic interactions between VCM and the (co)polymers' end groups. VCM payloads reached up to 25 wt%. The drug loading mechanism was investigated by solid state nuclear magnetic resonance spectroscopy. The engineered NPs were characterized by a set of advanced physicochemical methods, which allowed examining their morphology, internal structures, and chemical composition on an individual NP basis. The compartmentalized structure of NPs was evidenced by cryogenic transmission electronic microscopy, whereas the chemical composition of the NPs' top layers and core was obtained by electron microscopies associated with energy-dispersive X-ray spectroscopy. Noteworthy, atomic force microscopy coupled to infrared spectroscopy allowed mapping the drug location and gave semiquantitative information about the loadings of individual NPs. In addition, the NPs were stable upon storage and did not release the incorporated drug at neutral pH. Interestingly, a slight acidification of the medium induced a rapid VCM release. The compartmentalized NPs could find potential applications for controlled VCM release at an infected site with local acidic pH.

7.
Appl Spectrosc ; 75(12): 1538-1547, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34608808

RESUMO

The purpose of this work is to develop an integrated imaging approach to characterize without labeling at the sub-cellular level the formation of lipid body droplets (LBs) in microalgae undergoing nitrogen starvation. First conventional optical microscopy approaches, gas chromatography, and turbidimetry measurements allowed to monitor the biomass and the total lipid content in the oleaginous microalgae Parachlorella kesslerii during the starvation process. Then a local analysis of the LBs was proposed using an innovative infrared nanospectroscopy technique called atomic force microscopy-based infrared spectroscopy (AFM-IR). This label-free technique assessed the formation of LBs and allowed to look into the LB composition thanks to the acquisition of local infrared spectra. Last correlative measurements using fluorescence microscopy and AFM-IR were performed to investigate the subcellular reorganization of LB and the chloroplasts.


Assuntos
Microalgas , Gotículas Lipídicas , Microscopia de Força Atômica , Espectrofotometria Infravermelho
8.
Nat Commun ; 12(1): 5937, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34642345

RESUMO

Development of sustainable processes for hydrocarbons synthesis is a fundamental challenge in chemistry since these are of unquestionable importance for the production of many essential synthetic chemicals, materials and carbon-based fuels. Current industrial processes rely on non-abundant metal catalysts, temperatures of hundreds of Celsius and pressures of tens of bars. We propose an alternative gas phase process under mild reaction conditions using only atomic carbon, molecular hydrogen and an inert carrier gas. We demonstrate that the presence of CH2 and H radicals leads to efficient C-C chain growth, producing micron-length fibres of unbranched alkanes with an average length distribution between C23-C33. Ab-initio calculations uncover a thermodynamically favourable methylene coupling process on the surface of carbonaceous nanoparticles, which is kinematically facilitated by a trap-and-release mechanism of the reactants and nanoparticles that is confirmed by a steady incompressible flow simulation. This work could lead to future alternative sustainable synthetic routes to critical alkane-based chemicals or fuels.

9.
Analyst ; 146(1): 132-145, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33107501

RESUMO

Amyloid fibrils are composed of aggregated peptides or proteins in a fibrillary structure with a higher ß-sheet content than their native structure. Attenuated total reflection Fourier transform infrared spectroscopy only provides bulk analysis of a sample therefore it is impossible to discriminate between different aggregated structures. To overcome this limitation, near-field techniques like AFM-IR have emerged in the last twenty years to allow infrared nanospectroscopy. This technique obtains IR spectra with a spatial resolution of ten nanometres, the size of isolated fibrils. Here, we present essential practical considerations to avoid misinterpretations and artefacts during these analyses. Effects of polarization of the incident IR laser, illumination configuration and coating of the AFM probes are discussed, including the advantages and drawbacks of their use. This approach will improve interpretation of AFM-IR spectra especially for the determination of secondary structures of species not accessible using classical ATR-FTIR.


Assuntos
Amiloide , Peptídeos , Estrutura Secundária de Proteína , Espectrofotometria Infravermelho , Espectroscopia de Infravermelho com Transformada de Fourier
10.
Proc Natl Acad Sci U S A ; 117(33): 19670-19676, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32747556

RESUMO

The understanding of fossilization mechanisms at the nanoscale remains extremely challenging despite its fundamental interest and its implications for paleontology, archaeology, geoscience, and environmental and material sciences. The mineralization mechanism by which cellulosic, keratinous, and silk tissues fossilize in the vicinity of archaeological metal artifacts offers the most exquisite preservation through a mechanism unexplored on the nanoscale. It is at the center of the vast majority of ancient textiles preserved under nonextreme conditions, known through extremely valuable fragments. Here we show the reconstruction of the nanoscale mechanism leading to the preservation of an exceptional collection of ancient cellulosic textiles recovered in the ancient Near East (4,000 to 5,000 years ago). We demonstrate that even the most mineralized fibers, which contain inorganic compounds throughout their histology, enclose preserved cellulosic remains in place. We evidence a process that combines the three steps of water transport of biocidal metal cations and soil solutes, degradation and loss of crystallinity of cellulosic polysaccharides, and silicification.

11.
Anal Chem ; 92(17): 11498-11504, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32786438

RESUMO

The subcellular distribution of lipids in human hair was investigated to better understand their role in water permeability. Unlike stratum corneum where lipids are organized under a precisely ordered continuous structure, the removal of free lipids in hair does not lead to an increase of water permeability. Esterified and CH2-enriched molecules were tracked at a 10 nm resolution by infrared nanospectroscopy (atomic force microscopy coupled to infrared spectroscopy, AFMIR). Free and bound lipids in the 25 nm thick intercellular spaces were directly detected for the first time, further substantiating the potential of AFMIR to study complex biomaterials. We observed that they were mostly found accumulated in some regions of the external cuticle layers, as "hotspots" in nonkeratinous portions of the internal cortex, and that they do not seem to modulate much the water exchanges due to their discrete distribution throughout the hair fiber.


Assuntos
Cabelo/química , Lipídeos/química , Nanoestruturas/química , Esterificação , Humanos , Umidade , Metilação , Microscopia de Força Atômica , Espectrofotometria Infravermelho , Água
12.
Molecules ; 25(12)2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32599698

RESUMO

Amyloid fibrils are composed of aggregated peptides or proteins in a fibrillar structure with a higher ß-sheet content than in their native structure. To characterize them, we used an innovative tool that coupled infrared spectroscopy with atomic force microscopy (AFM-IR). With this method, we show that we can detect different individual aggregated species from oligomers to fibrils and study their morphologies by AFM and their secondary structures based on their IR spectra. AFM-IR overcomes the weak spatial resolution of usual infrared spectroscopy and achieves a resolution of ten nanometers, the size of isolated fibrils. We characterized oligomers, amyloid fibrils of Aß42 and fibrils of α-synuclein. To our surprise, we figured out that the nature of some surfaces (ZnSe) used to study the samples induces destructuring of amyloid samples, leading to amorphous aggregates. We strongly suggest taking this into consideration in future experiments with amyloid fibrils. More importantly, we demonstrate the advantages of AFM-IR, with a high spatial resolution (≤ 10 nm) allowing spectrum recording on individual aggregated supramolecular entities selected thanks to the AFM images or on thin layers of proteins.


Assuntos
Peptídeos beta-Amiloides/química , Fragmentos de Peptídeos/química , Espectrofotometria Infravermelho/métodos , Amiloide/química , Benzotiazóis/química , Fluorescência , Microscopia de Força Atômica/métodos , Estrutura Secundária de Proteína , Compostos de Selênio/química , Espectrometria de Fluorescência , Espectroscopia de Infravermelho com Transformada de Fourier , Compostos de Zinco/química , alfa-Sinucleína/química
13.
Chem Soc Rev ; 49(11): 3315-3347, 2020 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-32424384

RESUMO

The advent of nanotechnology, and the need to understand the chemical composition at the nanoscale, has stimulated the convergence of IR and Raman spectroscopy with scanning probe methods, resulting in new nanospectroscopy paradigms. Here we review two such methods, namely photothermal induced resonance (PTIR), also known as AFM-IR and tip-enhanced Raman spectroscopy (TERS). AFM-IR and TERS fundamentals will be reviewed in detail together with their recent crucial advances. The most recent applications, now spanning across materials science, nanotechnology, biology, medicine, geology, optics, catalysis, art conservation and other fields are also discussed. Even though AFM-IR and TERS have developed independently and have initially targeted different applications, rapid innovation in the last 5 years has pushed the performance of these, in principle spectroscopically complimentary, techniques well beyond initial expectations, thus opening new opportunities for their convergence. Therefore, subtle differences and complementarity will be highlighted together with emerging trends and opportunities.

14.
Anal Chem ; 92(11): 7388-7392, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32406230

RESUMO

Infrared (IR) spectromicroscopy allows chemical mapping of a kidney biopsy. It is particularly interesting for chemical speciation of abnormal tubular deposits and calcification. In 2017, using IR spectromicroscopy, we described a new entity called vancomycin cast nephropathy. However, despite recent progresses, the IR microspectrometer spatial resolution is intrinsically limited by diffraction (a few micrometers). Combining atomic force microscopy and IR lasers (AFMIR) allows acquisition of infrared absorption spectra with a resolution and sensitivity in between 10 and 100 nm. Here we show that AFMIR can be used on standard paraffin embedded kidney biopsies. Vancomycin cast could be identified in a damaged tubule. Interestingly unlike standard IR spectromicroscopy, AFMIR revealed heterogeneity of the deposits and established that vancomycin coprecipitated with phosphate containing molecules. These findings highlight the high potential of this approach with nanometric spatial resolution which opens new perspectives for studies on drug-induced nephritis, nanocrystals, and local lipid or carbohydrates alterations.


Assuntos
Nefropatias/diagnóstico por imagem , Nanopartículas/química , Vancomicina/química , Biópsia , Humanos , Nefropatias/induzido quimicamente , Microscopia Eletrônica de Varredura , Espectrofotometria Infravermelho , Vancomicina/efeitos adversos
15.
Environ Sci Technol ; 54(7): 4102-4109, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32150389

RESUMO

Plastic pollution has become a worldwide concern. It was demonstrated that plastic breaks down to nanoscale particles in the environment, forming so-called nanoplastics. It is important to understand their ecological impact, but their structure is not elucidated. In this original work, we characterize the microstructure of oceanic polyethylene debris and compare it to the nonweathered objects. Cross sections are analyzed by several emergent mapping techniques. We highlight deep modifications of the debris within a layer a few hundred micrometers thick. The most intense modifications are macromolecule oxidation and a considerable decrease in the molecular weight. The adsorption of organic pollutants and trace metals is also confined to this outer layer. Fragmentation of the oxidized layer of the plastic debris is the most likely source of nanoplastics. Consequently the nanoplastic chemical nature differs greatly from plastics.


Assuntos
Polietileno , Poluentes Químicos da Água , Monitoramento Ambiental , Oceanos e Mares , Plásticos , Resíduos
16.
Int J Pharm ; 579: 119193, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32135229

RESUMO

Janus nanoparticles (JNP) are innovative nanocarriers with an interesting pharmaceutical and cosmetic potential. They are characterized by the presence of a lipid compartment associated with an aqueous compartment delimited by a phospholipid bilayer containing phospholipids and non-ionic surfactants. The hydrodynamic diameter of JNP varies between 150 and 300 nm. The purpose of this study was to answer the following questions: after cutaneous application, are JNP penetrating? If so, how deep? And in which state, intact or degraded? It was essential to understand these phenomena in order to control the rate and kinetics of diffusion of active ingredients, which can be encapsulated in this vehicle for pharmaceutical or cosmetic purposes. An innovative technique called AFM-IR, was used to elucidate the behavior of JNP after cutaneous application. This instrument, coupling atomic force microscopy and IR spectroscopy, allowing to perform chemical analysis at the nanometer scale thanks to local absorption measurements. The identification of organic molecules at the nanoscale is possible without any labelling. Before cutaneous application of JNP, the nano-structure of untreated human skin was investigated with AFM-IR. Then, in vitro human skin penetration of JNP was studied using Franz cells, and AFM-IR allowed us to perform ultra-local information investigations.


Assuntos
Microscopia de Força Atômica/instrumentação , Nanopartículas Multifuncionais/metabolismo , Absorção Cutânea , Pele/metabolismo , Pele/ultraestrutura , Espectrofotometria Infravermelho/instrumentação , Espectrofotometria Infravermelho/métodos , Administração Cutânea , Feminino , Humanos , Nanopartículas Multifuncionais/administração & dosagem , Tamanho da Partícula
17.
Analyst ; 143(24): 5940-5949, 2018 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-30345433

RESUMO

AFM-IR is a photothermal technique that combines AFM and infrared (IR) spectroscopy to unambiguously identify the chemical composition of a sample with tens of nanometer spatial resolution. So far, it has been successfully used in contact mode in a variety of applications. However, the contact mode is unsuitable for soft or loosely adhesive samples such as polymeric nanoparticles (NPs) of less than 200 nm of wide interest for biomedical applications. We describe here the theoretical basis of the innovative tapping AFMIR mode that can address novel challenges in imaging and chemical mapping. The new method enables gaining information not only on NP morphology and composition, but also reveals drug location and core-shell structures. Whereas up to now the locations of NP components could only be hypothesized, tapping AFM-IR allows accurately visualizing both the location of the NPs' shells and that of the incorporated drug, pipemidic acid. The preferential accumulation of the drug in the NPs' top layers was proved, despite its low concentration (<1 wt%). These studies pave the way towards the use of tapping AFM-IR as a powerful tool to control the quality of NP formulations based on individual NP detection and component quantification.


Assuntos
Microscopia de Força Atômica/métodos , Nanopartículas/química , Poliésteres/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Espectrofotometria Infravermelho/métodos , Ácido Pipemídico/química , Álcool de Polivinil/química , Tensoativos/química
18.
Dalton Trans ; 47(29): 9824-9833, 2018 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-29993046

RESUMO

Antiproliferative activities of several members of the ferrocifen family, both in vitro and in vivo, are well documented although their precise location in cancer cells has not yet been elucidated. However, two different infrared imaging techniques have been used to map the non-cytotoxic cyrhetrenyl analogue of ferrociphenol in a single cell. This observation prompted us to tag two ferrocifens with a cyrhetrenyl unit [CpRe(CO)3; Cp = η5-cyclopentadienyl] by grafting it, via an ester bond, either to one of the phenols (4, 5) or to the hydroxypropyl chain (6). Complexes 4-6 retained a high cytotoxicity on breast cancer cells (MDA-MB-231) with IC50 values in the range 0.32-2.5 µM. Transmission IR spectroscopy was used to quantify the amount of cyrhetrenyl tag present in cells incubated with 5 or 6. The results show that after a 1-hour incubation of cells at 37 °C, complexes 5 and 6 are mainly present within cells while only a limited percentage, quantified by ICP-OES, remained in the incubation medium. AFM-IR spectroscopy, a technique coupling infrared irradiation with near-field AFM detection, was used to map the cyrhetrenyl unit in a single MDA-MB-231 cell, incubated at 37 °C for 1 hour with 10 µM of 6. The results show that signal distribution of the characteristic band of the Re(CO)3 entity at 1950 cm-1 matched those of amide and phosphate, thus indicating a location of the complex mainly in the cell nucleus.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Compostos Ferrosos/química , Compostos Organometálicos/química , Antineoplásicos/química , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Endocitose , Humanos , Concentração Inibidora 50 , Espectroscopia de Infravermelho com Transformada de Fourier
19.
Appl Spectrosc ; 71(10): 2344-2352, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28485613

RESUMO

There is a growing interest worldwide for the production of renewable oil without mobilizing agriculture lands; fast and reliable methods are needed to identify highly oleaginous microorganisms of potential industrial interest. The aim of this study was to demonstrate the relevance of attenuated total reflection (ATR) spectroscopy to achieve this goal. To do so, the total lipid content of lyophilized samples of five Streptomyces strains with varying lipid content was assessed with two classical quantitative but time-consuming methods, gas chromatography-mass spectrometry (GC-MS) and ATR Fourier transform infrared (ATR FT-IR) spectroscopy in transmission mode with KBr pellets and the fast ATR method, often questioned for its lack of reliability. A linear correlation between these three methods was demonstrated allowing the establishment of equations to convert ATR values expressed as CO/amide I ratio, into micrograms of lipid per milligram of biomass. The ATR method proved to be as reliable and quantitative as the classical GC-MS and FT-IR in transmission mode methods but faster and more reproducible than the latter since it involves far less manipulation for sample preparation than the two others. Attenuated total reflection could be regarded as an efficient fast screening method to identify natural or genetically modified oleaginous microorganisms by the scientific community working in the field of bio-lipids.


Assuntos
Ácidos Graxos/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Streptomyces/química , Biocombustíveis , Ácidos Graxos/química , Modelos Lineares
20.
Anal Bioanal Chem ; 409(9): 2353-2361, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28175936

RESUMO

Poly[(R)-3-hydroxyalkanoate]s or PHAs are aliphatic polyesters produced by numerous microorganisms. They are accumulated as energy and carbon reserve in the form of small intracellular vesicles. Poly[(R)-3-hydroxybutyrate] (PHB) is the most ubiquitous and simplest PHA. An atomic force microscope coupled with a tunable infrared laser (AFM-IR) was used to record highly spatially resolved infrared spectra of commercial purified PHB and native PHB within bacteria. For the first time, the crystallinity degree of native PHB within vesicle has been directly evaluated in situ without alteration due to the measure or extraction and purification steps of the polymer: native PHB is in crystalline state at 15% whereas crystallinity degree reaches 57% in commercial PHB. Chloroform addition on native PHB induces crystallization of the polymer within bacteria up to 60%. This possibility of probing and changing the physical state of polymer in situ could open alternative ways of production for PHB and others biopolymers. Graphical abstract An atomic force microscope coupled with a tunable infrared laser (AFM-IR) has been used to record local infrared spectra of biopolymer PHB within bacteria. Deconvolution of those spectra has allowed to determine in situ the crystallinity degree of native PHB.


Assuntos
Clorofórmio/farmacologia , Hidroxibutiratos/química , Polímeros/química , Rhodobacter sphaeroides/efeitos dos fármacos , Varredura Diferencial de Calorimetria , Cristalização , Microscopia de Força Atômica , Pós , Rhodobacter sphaeroides/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...