Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Issues Mol Biol ; 46(6): 5100-5116, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38920978

RESUMO

The biological activity of structural HIV-1 proteins is not limited to ensuring a productive viral infection but also interferes with cellular homeostasis through intra- and extracellular signaling activation. This interference induces genomic instability, increases the lifespan of the infected cell by inhibiting apoptosis, and subverts cell senescence, resulting in unrestricted cell proliferation. HIV structural proteins are present in a soluble form in the lymphoid tissues and blood of infected individuals, even without active viral replication. The HIV matrix protein p17, the envelope glycoprotein gp120, the transenvelope protein gp41, and the capsid protein p24 interact with immune cells and deregulate the biological activity of the immune system. The biological activity of HIV structural proteins is also demonstrated in endothelial cells and some tumor cell lines, confirming the ability of viral proteins to promote cell proliferation and cancer progression, even in the absence of active viral replication. This review corroborates the hypothesis that HIV structural proteins, by interacting with different cell types, contribute to creating a microenvironment that is favorable to the evolution of cancerous pathologies not classically related to AIDS.

2.
Cells ; 13(8)2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38667292

RESUMO

The discovery of hexanucleotide repeats expansion (RE) in Chromosome 9 Open Reading frame 72 (C9orf72) as the major genetic cause of amyotrophic lateral sclerosis (ALS) and the association between intermediate repeats in Ataxin-2 (ATXN2) with the disorder suggest that repetitive sequences in the human genome play a significant role in ALS pathophysiology. Investigating the frequency of repeat expansions in ALS in different populations and ethnic groups is therefore of great importance. Based on these premises, this study aimed to define the frequency of REs in the NIPA1, NOP56, and NOTCH2NLC genes and the possible associations between phenotypes and the size of REs in the Italian population. Using repeat-primed-PCR and PCR-fragment analyses, we screened 302 El-Escorial-diagnosed ALS patients and compared the RE distribution to 167 age-, gender-, and ethnicity-matched healthy controls. While the REs distribution was similar between the ALS and control groups, a moderate association was observed between longer RE lengths and clinical features such as age at onset, gender, site of onset, and family history. In conclusion, this is the first study to screen ALS patients from southern Italy for REs in NIPA1, NOP56, and NOTCH2NLC genes, contributing to our understanding of ALS genetics. Our results highlighted that the extremely rare pathogenic REs in these genes do not allow an association with the disease.


Assuntos
Esclerose Lateral Amiotrófica , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Lateral Amiotrófica/genética , Estudos de Casos e Controles , Expansão das Repetições de DNA/genética , Predisposição Genética para Doença , Itália , Proteínas Nucleares/genética
3.
Int J Mol Sci ; 24(22)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38003541

RESUMO

Prostate cancer (PCa) is the second most common male cancer. Its incidence derives from the interaction between modifiable and non-modifiable factors. The progression of prostate cancer into a more aggressive phenotype is associated with chronic inflammation and increased ROS production. For their biological properties, some phytochemicals from fruits and vegetable emerge as a promise strategy for cancer progression delay. These bioactive compounds are found in the highest amounts in peels and seeds. Poncirus trifoliata (L.) Raf. (PT) has been widely used in traditional medicine and retains anti-inflammatory, anti-bacterial, and anticancer effects. The seeds of P. trifoliata were exhaustively extracted by maceration with methanol as the solvent. The cell proliferation rate was performed by MTT and flow cytometry, while the apoptosis signals were analyzed by Western blotting and TUNEL assay. P. trifoliata seed extract reduced LNCaP and PC3 cell viability and induced cell cycle arrest at the G0/G1phase and apoptosis. In addition, a reduction in the AKT/mTOR pathway has been observed together with the up-regulation of stress-activated MAPK (p38 and c-Jun N-terminal kinase). Based on the study, the anti-growth effects of PT seed extract on prostate tumor cells give indications on the potential of the phytochemical drug for the treatment of this type of cancer. However, future in-depth studies are necessary to identify which components are mainly responsible for the anti-neoplastic response.


Assuntos
Poncirus , Neoplasias da Próstata , Masculino , Humanos , Receptores Androgênicos , Poncirus/química , Pontos de Checagem do Ciclo Celular , Neoplasias da Próstata/metabolismo , Apoptose , Sementes/metabolismo , Linhagem Celular Tumoral , Extratos Vegetais/farmacologia , Proliferação de Células , Ciclo Celular
4.
Int J Mol Sci ; 24(12)2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37373242

RESUMO

Glioblastoma multiforme (GBM) is one of the most aggressive types of cancer characterized by poor patient outcomes. To date, it is believed that the major cause of its recurrence and chemoresistance is represented by the enrichment of GBM stem cells (GSCs) sustained by the abnormal activation of a number of signaling pathways. In this study, we found that in GBM cells, treatment with low toxicity doses of the γ-secretase inhibitor RO4929097 (GSI), blocking the Notch pathway activity, in combination with resveratrol (RSV) was able to reverse the basal mesenchymal phenotype to an epithelial-like phenotype, affecting invasion and stemness interplay. The mechanism was dependent on cyclin D1 and cyclin-dependent kinase (CDK4), leading to a reduction of paxillin (Pxn) phosphorylation. Consequently, we discovered the reduced interaction of Pxn with vinculin (Vcl), which, during cell migration, transmits the intracellular forces to the extracellular matrix. The exogenous expression of a constitutively active Cdk4 mutant prevented the RSV + GSI inhibitory effects in GBM cell motility/invasion and augmented the expression of stemness-specific markers, as well as the neurosphere sizes/forming abilities in untreated cells. In conclusion, we propose that Cdk4 is an important regulator of GBM stem-like phenotypes and invasive capacity, highlighting how the combined treatment of Notch inhibitors and RSV could be prospectively implemented in the novel therapeutic strategies to target Cdk4 for these aggressive brain tumors.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/metabolismo , Resveratrol/uso terapêutico , Linhagem Celular Tumoral , Neoplasias Encefálicas/metabolismo , Transdução de Sinais , Células-Tronco Neoplásicas/metabolismo , Proliferação de Células
5.
J Transl Med ; 21(1): 165, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36864445

RESUMO

BACKGROUND: Breast cancer is the second leading cause of death among women after lung cancer. Despite the improvement in prevention and in therapy, breast cancer still remains a threat, both for pre- and postmenopausal women, due to the development of drug resistance. To counteract that, novel agents regulating gene expression have been studied in both hematologic and solid tumors. The Histone Deacetylase (HDAC) inhibitor Valproic Acid (VA), used for epilepsy and other neuropsychiatric diseases, has been demonstrated a strong antitumoral and cytostatic activity. In this study, we tested the effects of Valproic Acid on the signaling pathways involved in breast cancer cells viability, apoptosis and in Reactive Oxygen Species (ROS) production using ER-α positive MCF-7 and triple negative MDA-MB-231 cells. METHODS: Cell proliferation assay was performed by MTT Cell cycle, ROS levels and apoptosis were analyzed by flow cytometry, protein levels were detected by Western Blotting. RESULTS: Cell treatment with Valproic Acid reduced cell proliferation and induced G0/G1 cell cycle arrest in MCF-7 and G2/M block in MDA-MB-231 cells. In addition, in both cells the drug enhanced the generation of ROS by the mitochondria. In MCF-7 treated cells, it has been observed a reduction in mitochondrial membrane potential, a down regulation of the anti-apoptotic marker Bcl-2 and an increase of Bax and Bad, leading to release of cytochrome C and PARP cleavage. Less consistent effects are recorded in MDA-MB-231 cells, in which the greater production of ROS, compared to MCF-7cells, involves an inflammatory response (activation of p-STAT3, increased levels of COX2). CONCLUSIONS: Our results have demonstrated that in MCF-7 cells the Valproic Acid is a suitable drug to arrest cell growth, to address apoptosis and mitochondrial perturbations, all factors that are important in determining cell fate and health. In a triple negative MDA-MB 231 cells, valproate directs the cells towards the inflammatory response with a sustained expression of antioxidant enzymes. Overall, the not always unequivocal data between the two cellular phenotypes indicate that further studies are needed to better define the use of the drug, also in combination with other chemotherapy, in the treatment of breast tumors.


Assuntos
Inibidores de Histona Desacetilases , Ácido Valproico , Feminino , Humanos , Ácido Valproico/farmacologia , Células MCF-7 , Espécies Reativas de Oxigênio , Ciclo Celular , Proliferação de Células , Inibidores de Histona Desacetilases/farmacologia
6.
Life (Basel) ; 13(2)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36836619

RESUMO

Plant-derived bioactive compounds are gaining wide attention for their multiple health-promoting activities and in particular for their anti-cancer properties. Several studies have highlighted how they can prevent cancer initiation and progression, improve the effectiveness of chemotherapy, and, in some cases, limit some of the side effects of chemotherapy agents. In this paper, we provide an update of the literature on the anti-cancer effects of three extensively studied plant-derived compounds, namely resveratrol, epigallocatechin gallate, and curcumin, with a special focus on the anti-cancer molecular mechanisms inducing apoptosis in the major types of cancers globally.

7.
Int J Mol Sci ; 24(2)2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36675194

RESUMO

Various literature data show how a diet rich in vegetables could reduce the incidence of several cancers due to the contribution of the natural polyphenols contained in them. Polyphenols are attributed multiple pharmacological actions such as anti-inflammatory, anti-oxidant, antibiotic, antiseptic, anti-allergic, cardioprotective and even anti-tumor properties. The multiple mechanisms involved in their anti-tumor action include signaling pathways modulation associated with cell proliferation, differentiation, migration, angiogenesis, metastasis and cell death. Since the dysregulation of death processes is involved in cancer etiopathology, the natural compounds able to kill cancer cells could be used as new anticancer agents. Apoptosis, a programmed form of cell death, is the most potent defense against cancer and the main mechanism used by both chemotherapy agents and polyphenols. The aim of this review is to provide an update of literature data on the apoptotic molecular mechanisms induced by some representative polyphenol family members in cancer cells. This aspect is particularly important because it may be useful in the design of new therapeutic strategies against cancer involving the polyphenols as adjuvants.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Polifenóis/farmacologia , Polifenóis/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Dieta , Apoptose , Antioxidantes/farmacologia
8.
Neural Regen Res ; 18(6): 1243-1248, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36453400

RESUMO

The growing and rapid development of high-throughput sequencing technologies have allowed a greater understanding of the mechanisms underlying gene expression regulation. Editing the epigenome and epitranscriptome directs the fate of the transcript influencing the functional outcome of each mRNA. In this context, non-coding RNAs play a decisive role in addressing the expression regulation at the gene and chromosomal levels. Long-noncoding RNAs, consisting of more than 200 nucleotides, have been shown to act as epigenetic regulators in several key molecular processes involving neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and Huntington's disease. Long-noncoding RNAs are abundantly expressed in the central nervous system, suggesting that their deregulation could trigger neuronal degeneration through RNA modifications. The evaluation of their diagnostic significance and therapeutic potential could lead to new treatments for these diseases for which there is no cure.

9.
J Fungi (Basel) ; 8(8)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35893146

RESUMO

Ceratocystis platani (CP), an ascomycetous fungus, is the agent of canker stain, a lethal vascular disease of Platanus species. Ceratocystis platani has been listed as a quarantine pest (EPPO A2 list) due to extensive damage caused in Southern Europe and the Mediterranean region. As traditional diagnostic assays are ineffective, a Real-Time PCR detection method based on EvaGreen, SYBR Green, and Taqman assays was previously developed, validated in-house, and included in the official EPPO standard PM7/14 (2). Here, we describe the results of a test performance study performed by nine European laboratories for the purpose of an interlaboratory validation. Verification of the DNA extracted from biological samples guaranteed the high quality of preparations, and the stability and the homogeneity of the aliquots intended for the laboratories. All of the laboratories reproduced nearly identical standard curves with efficiencies close to 100%. Testing of blind-coded DNA extracted from wood samples revealed that all performance parameters-diagnostic sensitivity, diagnostic specificity, accuracy and reproducibility-were best fit in most cases both at the laboratory and at the assay level. The previously established limit of detection, 3 fg per PCR reaction, was also validated with similar excellent results. The high interlaboratory performance of this Real-Time PCR method confirms its value as a primary tool to safeguard C. platani-free countries by way of an accurate monitoring, and to investigate the resistance level of potentially canker stain-resistant Platanus genotypes.

10.
Int J Mol Sci ; 23(11)2022 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-35682974

RESUMO

Notch signaling dysregulation encourages breast cancer progression through different mechanisms such as stem cell maintenance, cell proliferation and migration/invasion. Furthermore, Notch is a crucial driver regulating juxtracrine and paracrine communications between tumor and stroma. The complex interplay between the abnormal Notch pathway orchestrating the activation of other signals and cellular heterogeneity contribute towards remodeling of the tumor microenvironment. These changes, together with tumor evolution and treatment pressure, drive breast cancer drug resistance. Preclinical studies have shown that targeting the Notch pathway can prevent or reverse resistance, reducing or eliminating breast cancer stem cells. In the present review, we will summarize the current scientific evidence that highlights the involvement of Notch activation within the breast tumor microenvironment, angiogenesis, extracellular matrix remodeling, and tumor/stroma/immune system interplay and its involvement in mechanisms of therapy resistance.


Assuntos
Neoplasias da Mama , Microambiente Tumoral , Neoplasias da Mama/metabolismo , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Receptores Notch/metabolismo , Transdução de Sinais
11.
Int J Mol Sci ; 23(3)2022 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-35163166

RESUMO

It is known that estrogen stimulates growth and inhibits apoptosis through estrogen receptor(ER)-mediated mechanisms in many cancer cell types. Interestingly, there is strong evidence that estrogens can also induce apoptosis, activating different ER isoforms in cancer cells. It has been observed that E2/ERα complex activates multiple pathways involved in both cell cycle progression and apoptotic cascade prevention, while E2/ERß complex in many cases directs the cells to apoptosis. However, the exact mechanism of estrogen-induced tumor regression is not completely known. Nevertheless, ERs expression levels of specific splice variants and their cellular localization differentially affect outcome of estrogen-dependent tumors. The goal of this review is to provide a general overview of current knowledge on ERs-mediated apoptosis that occurs in main hormone dependent-cancers. Understanding the molecular mechanisms underlying the induction of ER-mediated cell death will be useful for the development of specific ligands capable of triggering apoptosis to counteract estrogen-dependent tumor growth.


Assuntos
Apoptose , Neoplasias Hormônio-Dependentes/patologia , Receptores de Estrogênio/metabolismo , Animais , Humanos , Neoplasias Hormônio-Dependentes/genética , Neoplasias Hormônio-Dependentes/metabolismo , Receptores de Estrogênio/genética , Transdução de Sinais
12.
Cancer Drug Resist ; 5(4): 939-953, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36627893

RESUMO

The current therapeutic protocols and prognosis of gliomas still depend on clinicopathologic and radiographic characteristics. For high-grade gliomas, the standard of care is resection followed by radiotherapy plus temozolomide chemotherapy. However, treatment resistance develops due to different mechanisms, among which is the dynamic interplay between the tumor and its microenvironment. Different signaling pathways cause the proliferation of so-called glioma stem cells, a minor cancer cell population with stem cell-like characteristics and aggressive phenotype. In the last decades, numerous studies have indicated that Notch is a crucial pathway that maintains the characteristics of resistant glioma stem cells. Data obtained from preclinical models indicate that downregulation of the Notch pathway could induce multifaceted drug sensitivity, acting on the expression of drug-transporter proteins, inducing epithelial-mesenchymal transition, and shaping the tumor microenvironment. This review provides a brief overview of the published data supporting the roles of Notch in drug resistance and demonstrates how potential novel strategies targeting Notch could become an efficacious action to improve the therapy of high-grade glioma to overcome drug resistance.

13.
Cancers (Basel) ; 13(18)2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34572782

RESUMO

New avenues for glioblastoma therapy are required due to the limited mortality benefit of the current treatments. The renin-angiotensin system (RAS) exhibits local actions and works as a paracrine system in different tissues and tumors, including glioma. The glioblastoma cell lines U-87 MG and T98G overexpresses Angiotensin II (Ang II)/Angiotensin II type I receptor (AGTR1) signaling, which enhances in vitro and in vivo local estrogen production through a direct up-regulation of the aromatase gene promoters p I.f and p I.4. In addition, Ang II/AGTR1 signaling transactivates estrogen receptor-α in a ligand-independent manner through mitogen-activated protein kinase (MAPK) activation. The higher aromatase mRNA expression in patients with glioblastoma was associated with the worst survival prognostic, according to The Cancer Genome Atlas (TCGA). An intrinsic immunosuppressive glioblastoma tumor milieu has been previously documented. We demonstrate how Ang II treatment in glioblastoma cells increases programmed death-ligand 1 (PD-L1) expression reversed by combined exposure to Losartan (LOS) in vitro and in vivo. Our findings highlight how LOS, in addition, antagonizes the previously documented neoangiogenetic, profibrotic, and immunosuppressive effects of Ang II and drastically inhibits its stimulatory effects on local estrogen production, sustaining glioblastoma cell growth. Thus, Losartan may represent an adjuvant pharmacological tool to be repurposed prospectively for glioblastoma treatment.

14.
Nutrients ; 13(8)2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34444715

RESUMO

The traditional Mediterranean Diet constitutes a food model that refers to the dietary patterns of the population living in countries bordering the Mediterranean Sea in the early 1960s. A huge volume of literature data suggests that the Mediterranean-style diet provides several dietary compounds that have been reported to exert beneficial biological effects against a wide spectrum of chronic illnesses, such as cardiovascular and neurodegenerative diseases and cancer including breast carcinoma. Among bioactive nutrients identified as protective factors for breast cancer, natural polyphenols, retinoids, and polyunsaturated fatty acids (PUFAs) have been reported to possess antioxidant, anti-inflammatory, immunomodulatory and antitumoral properties. The multiple anticancer mechanisms involved include the modulation of molecular events and signaling pathways associated with cell survival, proliferation, differentiation, migration, angiogenesis, antioxidant enzymes and immune responses. This review summarizes the anticancer action of some polyphenols, like resveratrol and epigallocatechin 3-gallate, retinoids and omega-3 PUFAs by highlighting the important hallmarks of cancer in terms of (i) cell cycle growth arrest, (ii) apoptosis, (iii) inflammation and (iv) angiogenesis. The data collected from in vitro and in vivo studies strongly indicate that these natural compounds could be the prospective candidates for the future anticancer therapeutics in breast cancer disease.


Assuntos
Antineoplásicos , Neoplasias da Mama/dietoterapia , Neoplasias da Mama/tratamento farmacológico , Dieta Mediterrânea , Suplementos Nutricionais , Animais , Antineoplásicos/farmacologia , Apoptose , Neoplasias da Mama/patologia , Catequina/análogos & derivados , Catequina/farmacologia , Pontos de Checagem do Ciclo Celular , Ácidos Graxos Ômega-3/farmacologia , Feminino , Humanos , Inflamação , Polifenóis/farmacologia , Resveratrol/farmacologia , Retinoides/farmacologia
15.
Am J Cancer Res ; 11(12): 5933-5950, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35018234

RESUMO

Glioblastoma multiforme (GBM) is the most common and aggressive form of brain tumors and the hardest type of cancer to treat. Therapies targeting developmental pathways, such as Notch, eliminate neoplastic glioma cells, but their efficacy can be limited by various mechanisms. Combination regimens may represent a good opportunity for effective therapies with durable effects. We used low doses of the γ-secretase inhibitor RO4929097 (GSI), to block the Notch pathway activity, in combination with Resveratrol (RSV) and we evidenced the mechanisms of autophagy/apoptosis transition in GBM cells. Resveratrol and GSI combination results in the synergistic induction of cell death together with the block of the autophagic flux evidenced by a sustained increase of LC3-II and p62 protein content, due to the dramatic reduction of CDK4, an important regulator of lysosomal function. The ectopic overexpression of the constitutive active CDK4 mutant, greatly counteracted the RSV+GSI induced block of the autophagy. Triggering autophagy in RSV+GSI-treated cells, which have impaired lysosomal function, caused the collapse of the system and a following apoptosis. For instance, by combining the CDK4 mutant as well as the early stage autophagy inhibitor, 3-methyladenina, abolished the RSV+GSI induced caspases activation. The initiator caspases (caspases-8 and -9), effector caspase (caspase-3) and its downstream substrate PARP were induced after RSV+GSI exposure as well as the percentage of the TUNEL positive cells. Moreover, the pro-apoptotic signaling MAPK p38 was activated while the pro-survival MAPK p42/p44 signaling was inhibited. In short, we establish the role of CDK4 in the regulation of autophagy/apoptosis transition induced by RSV and GSI in GBM cells. This new synergistic therapeutic combination, increasing the accumulation of autophagosomes, may have therapeutic value for GBM patients.

16.
Cells ; 9(12)2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33317149

RESUMO

Cyclin D1, an important regulator of cell cycle, carries out a central role in the pathogenesis of cancer determining uncontrolled cellular proliferation. In normal cells, Cyclin D1 expression levels are strictly regulated, conversely, in cancer, its activity is intensified in various manners. Different studies demonstrate that CCDN1 gene is amplified in several tumor types considering it as a negative prognostic marker of this pathology. Cyclin D1 is known for its role in the nucleus, but recent clinical studies associate the amount located in the cytoplasmic membrane with tumor invasion and metastasis. Cyclin D1 has also other functions: it governs the expression of specific miRNAs and it plays a crucial role in the tumor-stroma interactions potentiating most of the cancer hallmarks. In the present review, we will summarize the current scientific evidences that highlight the involvement of Cyclin D1 in the pathogenesis of different types of cancer, best of all in breast cancer. We will also focus on recent insights regarding the Cyclin D1 as molecular bridge between cell cycle control, adhesion, invasion, and tumor/stroma/immune-system interplay in cancer.


Assuntos
Pontos de Checagem do Ciclo Celular , Ciclina D1/metabolismo , Neoplasias/patologia , Adesão Celular , Ciclina D1/genética , Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinases Ciclina-Dependentes/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/metabolismo , Invasividade Neoplásica , Neoplasias/metabolismo , Microambiente Tumoral
17.
Life (Basel) ; 10(12)2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33317204

RESUMO

The follicle-stimulating hormone receptor (FSH-R) expression was always considered human gonad-specific. The receptor has also been newly detected in extragonadal tissues. In this finding, we evaluated FSH-R expression in the human male early genital tract, in testicular tumors, and in sperm from healthy and varicocele patients. In sperm, we also studied the mechanism of FSH-R action. Immunohystochemistry and Western blot analysis showed FSH-R presence in the first pathways of the human genital tract, in embryonal carcinoma, and in sperm, but it was absent in seminoma and in lower varicocele. In sperm, FSH/FSH-R activity is mediated by G proteins activating the PKA pathway, as we observed by using the H89. It emerged that increasing FSH treatments induced motility, survival, capacitation, and acrosome reaction in both sperm samples. The different FSH-R expression in tumor testicular tissues may be discriminate by tumor histological type. In spermatozoa, FSH-R indicates a direct action of FSH in these cells, which could be beneficial during semen preparation for in vitro fertilization procedures. For instance, FSH positive effects could be relevant in idiopathic infertility and in the clinic surgery of varicocele. In conclusion, FSH-R expression may be considered a molecular marker of testicular disorders.

18.
Hum Reprod ; 35(9): 2072-2085, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32766764

RESUMO

Peroxisome proliferator-activated receptor gamma (PPARγ) acts as a ligand activated transcription factor and regulates processes, such as energy homeostasis, cell proliferation and differentiation. PPARγ binds to DNA as a heterodimer with retinoid X receptor and it is activated by polyunsaturated fatty acids and fatty acid derivatives, such as prostaglandins. In addition, the insulin-sensitizing thiazolidinediones, such as rosiglitazone, are potent and specific activators of PPARγ. PPARγ is present along the hypothalamic-pituitary-testis axis and in the testis, where low levels in Leydig cells and higher levels in Sertoli cells as well as in germ cells have been found. High amounts of PPARγ were reported in the normal epididymis and in the prostate, but the receptor was almost undetectable in the seminal vesicles. Interestingly, in the human and in pig, PPARγ protein is highly expressed in ejaculated spermatozoa, suggesting a possible role of PPARγ signaling in the regulation of sperm biology. This implies that both natural and synthetic PPARγ ligands may act directly on sperm improving its performance. Given the close link between energy balance and reproduction, activation of PPARγ may have promising metabolic implications in male reproductive functions. In this review, we first describe PPARγ expression in different compartments of the male reproductive axis. Subsequently, we discuss the role of PPARγ in both physiological and several pathological conditions related to the male fertility.


Assuntos
PPAR gama , Tiazolidinedionas , Animais , Fertilidade , Masculino , Rosiglitazona , Suínos , Fatores de Transcrição
19.
Cells ; 9(7)2020 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-32708484

RESUMO

Recent studies conducted over the past 10 years evidence the intriguing role of the tumor suppressor gene Phosphatase and Tensin Homolog deleted on Chromosome 10 PTEN in the regulation of cellular energy expenditure, together with its capability to modulate proliferation and survival, thus expanding our knowledge of its physiological functions. Transgenic PTEN mice models are resistant to oncogenic transformation, present decreased adiposity and reduced cellular glucose and glutamine uptake, together with increased mitochondrial oxidative phosphorylation. These acquisitions led to a novel understanding regarding the role of PTEN to counteract cancer cell metabolic reprogramming. Particularly, PTEN drives an "anti-Warburg state" in which less glucose is taken up, but it is more efficiently directed to the mitochondrial Krebs cycle. The maintenance of cellular homeostasis together with reduction of metabolic stress are controlled by specific pathways among which autophagy, a catabolic process strictly governed by mTOR and PTEN. Besides, a role of PTEN in metabolic reprogramming and tumor/stroma interactions in cancer models, has recently been established. The genetic inactivation of PTEN in stromal fibroblasts of mouse mammary glands, accelerates breast cancer initiation and progression. This review will discuss our novel understanding in the molecular connection between cell metabolism and autophagy by PTEN, highlighting novel implications regarding tumor/stroma/immune system interplay. The newly discovered action of PTEN opens innovative avenues for investigations relevant to counteract cancer development and progression.


Assuntos
Autofagia , Sistema Imunitário/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Microambiente Tumoral , Animais , Transição Epitelial-Mesenquimal , Humanos , Neoplasias/metabolismo , Neoplasias/patologia
20.
BMC Cancer ; 19(1): 1038, 2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31684907

RESUMO

BACKGROUND: Androgens, through their own receptor, play a protective role on breast tumor development and progression and counterbalance estrogen-dependent growth stimuli which are intimately linked to breast carcinogenesis. METHODS: Cell counting by trypan blu exclusion was used to study androgen effect on estrogen-dependent breast tumor growth. Quantitative Real Time RT-PCR, western blotting, transient transfection, protein immunoprecipitation and chromatin immunoprecipitation assays were carried out to investigate how androgen treatment and/or androgen receptor overexpression influences the functional interaction between the steroid receptor coactivator AIB1 and the estrogen- or androgen receptor which, in turn affects the estrogen-induced cyclin D1 gene expression in MCF-7 breast cancer cells. Data were analyzed by ANOVA. RESULTS: Here we demonstrated, in estrogen receptor α (ERα)-positive breast cancer cells, an androgen-dependent mechanism through which ligand-activated androgen receptor (AR) decreases estradiol-induced cyclin D1 protein, mRNA and gene promoter activity. These effects involve the competition between AR and ERα for the interaction with the steroid receptor coactivator AIB1, a limiting factor in the functional coupling of the ERα with the cyclin D1 promoter. Indeed, AIB1 overexpression is able to reverse the down-regulatory effects exerted by AR on ERα-mediated induction of cyclin D1 promoter activity. Co-immunoprecipitation studies indicated that the preferential interaction of AIB1 with ERα or AR depends on the intracellular expression levels of the two steroid receptors. In addition, ChIP analysis evidenced that androgen administration decreased E2-induced recruitment of AIB1 on the AP-1 site containing region of the cyclin D1 gene promoter. CONCLUSIONS: Taken together all these data support the hypothesis that AIB1 sequestration by AR may be an effective mechanism to explain the reduction of estrogen-induced cyclin D1 gene activity. In estrogen-dependent breast cancer cell proliferation, these findings reinforce the possibility that targeting AR signalling may potentiate the effectiveness of anti-estrogen adjuvant therapies.


Assuntos
Neoplasias da Mama/metabolismo , Ciclina D1/genética , Receptor alfa de Estrogênio/metabolismo , Coativador 3 de Receptor Nuclear/metabolismo , Receptores Androgênicos/metabolismo , Ciclina D1/metabolismo , Estradiol/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Coativador 3 de Receptor Nuclear/genética , Regiões Promotoras Genéticas/genética , Ligação Proteica , RNA Mensageiro/genética , Transdução de Sinais , Fator de Transcrição AP-1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...