Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Sports Med ; 38(1): 48-54, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28073123

RESUMO

This study examined the effects of precooling on performance and pacing during 30-km cycling exercise in hot and temperate environments. 8 trained male cyclists performed 4 trials involving either cooling (PRECTEMP and PRECHOT) or no-cooling interventions (TEMP and HOT) prior to a 30-km self-paced cycling exercise in either a hot (35°C, 68% relative humidity) or temperate environment (24°C, 68% relative humidity). Exercise time was longer in HOT (60.62±3.47 min) than in TEMP (58.28±3.30 min; P<0.001), and precooling attenuated this thermal strain performance impairment (PRECHOT 58.28±3.30 min; P=0.048), but it was still impaired compared with TEMP (P=0.02). Exercise performance in PRECTEMP (54.58±4.35 min) was no different from TEMP. Initial power output was sustained until the end of the exercise in both TEMP and PRECTEMP, but was reduced from the 12th km until the end of the trial in HOT (P<0.05). This reduction was delayed by precooling because power output was reduced only after the 20th km during PRECHOT (P<0.05). Heart rate was similar in all conditions throughout almost the entire exercise, suggesting the maintenance of similar relative intensities. In conclusion, precooling was effective in attenuating, but not completely reversing thermal strain performance impairment and offered no ergogenic effect in the temperate environment.


Assuntos
Desempenho Atlético/fisiologia , Ciclismo/fisiologia , Temperatura Corporal , Temperatura Alta , Adulto , Estudos Cross-Over , Ingestão de Líquidos , Teste de Esforço , Frequência Cardíaca , Humanos , Masculino , Consumo de Oxigênio , Sudorese
2.
Eur J Appl Physiol ; 113(4): 965-73, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23053123

RESUMO

The purpose of this study was to investigate the effects of a 6-week aerobic training period on the time to fatigue (t lim) during exercise performed at the maximal lactate steady state (MLSS). Thirteen untrained male subjects (TG; age 22.5 ± 2.4 years, body mass 72.9 ± 6.7 kg and VO2max 44.9 ± 4.8 mL kg(-1) min(-1)) performed a cycle ergometer test until fatigue at the MLSS power output before and after 6 weeks of aerobic training. A group of eight control subjects (CG; age 25.1 ± 2.4 years, body mass 70.1 ± 9.8 kg and VO2max 45.2 ± 4.1 mL kg(-1) min(-1)) also performed the two tests but did not train during the 6-week period. There were no differences between the groups with respect to the VO2max or MLSS power output (MLSSw) before the treatment period. The VO2max and the MLSSw of the TG increased by 11.2 ± 7.2 % (pre-treatment = 44.9 ± 4.8 vs. post-treatment = 49.8 ± 4.5 mL kg(-1) min(-1)) and 14.7 ± 8.9 % (pre-treatment = 150 ± 27 vs. post-treatment = 171 ± 26 W), respectively, after 6 weeks of training. The results of the CG were unchanged. There were no differences in t lim between the groups or within groups before and after training. Six weeks of aerobic training increases MLSSw and VO2max, but it does not alter the t lim at the MLSS.


Assuntos
Exercício Físico , Ácido Láctico/sangue , Contração Muscular , Fadiga Muscular , Músculo Esquelético/metabolismo , Consumo de Oxigênio , Adiposidade , Adulto , Limiar Anaeróbio , Análise de Variância , Ciclismo , Biomarcadores/sangue , Brasil , Teste de Esforço , Frequência Cardíaca , Humanos , Masculino , Força Muscular , Fatores de Tempo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...