Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Noncoding RNA ; 7(4)2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34842779

RESUMO

As more sequencing data accumulate and novel puzzling genetic regulations are discovered, the need for accurate automated modeling of RNA structure increases. RNA structure modeling from chemical probing experiments has made tremendous progress, however accurately predicting large RNA structures is still challenging for several reasons: RNA are inherently flexible and often adopt many energetically similar structures, which are not reliably distinguished by the available, incomplete thermodynamic model. Moreover, computationally, the problem is aggravated by the relevance of pseudoknots and non-canonical base pairs, which are hardly predicted efficiently. To identify nucleotides involved in pseudoknots and non-canonical interactions, we scrutinized the SHAPE reactivity of each nucleotide of the 188 nt long lariat-capping ribozyme under multiple conditions. Reactivities analyzed in the light of the X-ray structure were shown to report accurately the nucleotide status. Those that seemed paradoxical were rationalized by the nucleotide behavior along molecular dynamic simulations. We show that valuable information on intricate interactions can be deduced from probing with different reagents, and in the presence or absence of Mg2+. Furthermore, probing at increasing temperature was remarkably efficient at pointing to non-canonical interactions and pseudoknot pairings. The possibilities of following such strategies to inform structure modeling software are discussed.

2.
Methods Mol Biol ; 2323: 13-23, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34086270

RESUMO

RNA is a pivotal element of the cell which is most of the time found in complex with protein(s) in a cellular environment. RNA can adopt three-dimensional structures that may form specific binding sites not only for proteins but for all sorts of molecules. Since the early days of molecular biology, strategies to probe RNA structure have been developed. Such probes are small molecules or RNases that most of the time specifically react with single strand nucleotides. The precise reaction or cleavage site can be mapped by reverse transcription. It appears that nucleotides in close contact or in proximity of a ligand are no longer reactive to these probes. Carrying the RNA probing experiment in parallel in presence and absence of a ligand yield differences that are known as the ligand "footprint." Such footprints allow for the identification of the precise site of the ligand interaction, but also reveals RNA structural rearrangement upon ligand binding. Here we provide an experimental and analytical workflow to carry RNA footprinting experiments.


Assuntos
Biologia Computacional/métodos , Técnicas de Sonda Molecular/instrumentação , Proteínas de Ligação a RNA/metabolismo , RNA/química , RNA/metabolismo , Análise de Sequência de RNA/métodos , Humanos , Conformação de Ácido Nucleico , Ribonucleases/metabolismo
3.
Biochimie ; 164: 83-94, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30910425

RESUMO

DEAD-box helicases play central roles in the metabolism of many RNAs and ribonucleoproteins by assisting their synthesis, folding, function and even their degradation or disassembly. They have been implicated in various phenomena, and it is often difficult to rationalize their molecular roles from in vivo studies. Once purified in vitro, most of them only exhibit a marginal activity and poor specificity. The current model is that they gain specificity and activity through interaction of their intrinsically disordered domains with specific RNA or proteins. DDX3 is a DEAD-box cellular helicase that has been involved in several steps of the HIV viral cycle, including transcription, RNA export to the cytoplasm and translation. In this study, we investigated DDX3 biochemical properties in the context of a biological substrate. DDX3 was overexpressed, purified and its enzymatic activities as well as its RNA binding properties were characterized using both model substrates and a biological substrate, HIV-1 gRNA. Biochemical characterization of DDX3 in the context of a biological substrate identifies HIV-1 gRNA as a rare example of specific substrate and unravels the extent of DDX3 ATPase activity. Analysis of DDX3 binding capacity indicates an unexpected dissociation between its binding capacity and its biochemical activity. We further demonstrate that interaction of DDX3 with HIV-1 gRNA relies both on specific RNA determinants and on the disordered N- and C-terminal regions of the protein. These findings shed a new light regarding the potentiality of DDX3 biochemical activity supporting its multiple cellular functions.


Assuntos
RNA Helicases DEAD-box , Infecções por HIV/virologia , HIV-1/genética , RNA Guia de Cinetoplastídeos/metabolismo , RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/isolamento & purificação , RNA Helicases DEAD-box/fisiologia , Humanos , Cinética , Ligação Proteica , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...