Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(17): e2307214121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38621123

RESUMO

Environmental DNA (eDNA) metabarcoding has the potential to revolutionize conservation planning by providing spatially and taxonomically comprehensive data on biodiversity and ecosystem conditions, but its utility to inform the design of protected areas remains untested. Here, we quantify whether and how identifying conservation priority areas within coral reef ecosystems differs when biodiversity information is collected via eDNA analyses or traditional visual census records. We focus on 147 coral reefs in Indonesia's hyper-diverse Wallacea region and show large discrepancies in the allocation and spatial design of conservation priority areas when coral reef species were surveyed with underwater visual techniques (fishes, corals, and algae) or eDNA metabarcoding (eukaryotes and metazoans). Specifically, incidental protection occurred for 55% of eDNA species when targets were set for species detected by visual surveys and 71% vice versa. This finding is supported by generally low overlap in detection between visual census and eDNA methods at species level, with more overlap at higher taxonomic ranks. Incomplete taxonomic reference databases for the highly diverse Wallacea reefs, and the complementary detection of species by the two methods, underscore the current need to combine different biodiversity data sources to maximize species representation in conservation planning.


Assuntos
Antozoários , DNA Ambiental , Animais , Recifes de Corais , Ecossistema , DNA Ambiental/genética , Biodiversidade , Antozoários/genética , Peixes , Código de Barras de DNA Taxonômico
2.
PeerJ ; 11: e16075, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37790632

RESUMO

In tropical marine ecosystems, the coral-based diet of benthic-feeding reef fishes provides a window into the composition and health of coral reefs. In this study, for the first time, we compare multi-assay metabarcoding sequences of environmental DNA (eDNA) isolated from seawater and partially digested gut items from an obligate corallivore butterflyfish (Chaetodon lunulatus) resident to coral reef sites in the South China Sea. We specifically tested the proportional and statistical overlap of the different approaches (seawater vs gut content metabarcoding) in characterizing eukaryotic community composition on coral reefs. Based on 18S and ITS2 sequence data, which differed in their taxonomic sensitivity, we found that gut content detections were only partially representative of the eukaryotic communities detected in the seawater based on low levels of taxonomic overlap (3 to 21%) and significant differences between the sampling approaches. Overall, our results indicate that dietary metabarcoding of specialized feeders can be complimentary to, but is no replacement for, more comprehensive environmental DNA assays of reef environments that might include the processing of different substrates (seawater, sediment, plankton) or traditional observational surveys. These molecular assays, in tandem, might be best suited to highly productive but cryptic oceanic environments (kelp forests, seagrass meadows) that contain an abundance of organisms that are often small, epiphytic, symbiotic, or cryptic.


Assuntos
Antozoários , DNA Ambiental , Animais , Ecossistema , Recifes de Corais , Antozoários/genética , Água do Mar
3.
Zookeys ; 934: 141-156, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32508498

RESUMO

A new species and the first confirmed record of a true pygmy seahorse from Africa, Hippocampus nalu sp. nov., is herein described on the basis of two specimens, 18.9-22 mm SL, collected from flat sandy coral reef at 14-17 meters depth from Sodwana Bay, South Africa. The new taxon shares morphological synapomorphies with the previously described central Indo-Pacific pygmy seahorses, H. colemani, H. japapigu, H. pontohi, and H. satomiae, and H. waleananus, including diminutive size, twelve trunk rings, prominent cleithral ring and supracleithrum, spines on the fifth and twelfth superior and lateral trunk ridges, respectively, and prominent wing-like protrusions present on the first and/or second superior trunk rings posterior to the head. Hippocampus nalu sp. nov. is primarily distinguished from its pygmy seahorse congeners by highly distinct spine morphology along the anterior segments of the superior trunk ridge. Comparative molecular analysis reveals that the new species demonstrates significant genetic divergence in the mitochondrial COI gene from the morphologically similar H. japapigu and H. pontohi (estimated uncorrected p-distances of 16.3% and 15.2%, respectively). Hippocampus nalu sp. nov. represents the eighth member of the pygmy seahorse clade to be described from the Indo-Pacific, the first confirmed record from the African continent and the Indian Ocean, and an extension of more than 8000 km beyond the previously known range of pygmy seahorses from the Central and Western Indo-Pacific.

4.
Sci Rep ; 10(1): 8365, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32433472

RESUMO

Loss of biodiversity from lower to upper trophic levels reduces overall productivity and stability of coastal ecosystems in our oceans, but rarely are these changes documented across both time and space. The characterisation of environmental DNA (eDNA) from sediment and seawater using metabarcoding offers a powerful molecular lens to observe marine biota and provides a series of 'snapshots' across a broad spectrum of eukaryotic organisms. Using these next-generation tools and downstream analytical innovations including machine learning sequence assignment algorithms and co-occurrence network analyses, we examined how anthropogenic pressures may have impacted marine biodiversity on subtropical coral reefs in Okinawa, Japan. Based on 18 S ribosomal RNA, but not ITS2 sequence data due to inconsistent amplification for this marker, as well as proxies for anthropogenic disturbance, we show that eukaryotic richness at the family level significantly increases with medium and high levels of disturbance. This change in richness coincides with compositional changes, a decrease in connectedness among taxa, an increase in fragmentation of taxon co-occurrence networks, and a shift in indicator taxa. Taken together, these findings demonstrate the ability of eDNA to act as a barometer of disturbance and provide an exemplar of how biotic networks and coral reefs may be impacted by anthropogenic activities.


Assuntos
Biodiversidade , Biota/genética , DNA Ambiental/genética , Monitoramento Ambiental/métodos , Recifes de Corais , Código de Barras de DNA Taxonômico , DNA Ambiental/isolamento & purificação , DNA Espaçador Ribossômico/genética , DNA Espaçador Ribossômico/isolamento & purificação , Marcadores Genéticos/genética , Oceanos e Mares , RNA Ribossômico 18S/genética , Água do Mar , Análise Espaço-Temporal
5.
PeerJ ; 7: e6379, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30755831

RESUMO

BACKGROUND: Effective biodiversity monitoring is fundamental in tracking changes in ecosystems as it relates to commercial, recreational, and conservation interests. Current approaches to survey coral reef ecosystems center on the use of indicator species and repeat surveying at specific sites. However, such approaches are often limited by the narrow snapshot of total marine biodiversity that they describe and are thus hindered in their ability to contribute to holistic ecosystem-based monitoring. In tandem, environmental DNA (eDNA) and next-generation sequencing metabarcoding methods provide a new opportunity to rapidly assess the presence of a broad spectrum of eukaryotic organisms within our oceans, ranging from microbes to macrofauna. METHODS: We here investigate the potential for rapid universal metabarcoding surveys (RUMS) of eDNA in sediment samples to provide snapshots of eukaryotic subtropical biodiversity along a depth gradient at two coral reefs in Okinawa, Japan based on 18S rRNA. RESULTS: Using 18S rRNA metabarcoding, we found that there were significant separations in eukaryotic community assemblages (at the family level) detected in sediments when compared across different depths ranging from 10 to 40 m (p = 0.001). Significant depth zonation was observed across operational taxonomic units assigned to the class Demospongiae (sponges), the most diverse class (contributing 81% of species) within the phylum Porifera; the oldest metazoan phylum on the planet. However, zonation was not observed across the class Anthozoa (i.e., anemones, stony corals, soft corals, and octocorals), suggesting that the former may serve as a better source of indicator species based on sampling over fine spatial scales and using this universal assay. Furthermore, despite their abundance on the examined coral reefs, we did not detect any octocoral DNA, which may be due to low cellular shedding rates, assay sensitivities, or primer biases. DISCUSSION: Overall, our pilot study demonstrates the importance of exploring depth effects in eDNA and suggest that RUMS may be applied to provide a baseline of information on eukaryotic marine taxa at coastal sites of economic and conservation importance.

6.
Sci Rep ; 9(1): 748, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30679714

RESUMO

Millions of people take animal pictures during wildlife interactions, yet the impacts of photographer behaviour and photographic flashes on animals are poorly understood. We investigated the pathomorphological and behavioural impacts of photographer behaviour and photographic flashes on 14 benthic fish species that are important for scuba diving tourism and aquarium displays. We ran a field study to test effects of photography on fish behaviour, and two laboratory studies that tested effects of photographic flashes on seahorse behaviour, and ocular and retinal anatomy. Our study showed that effects of photographic flashes are negligible and do not have stronger impacts than those caused solely by human presence. Photographic flashes did not cause changes in gross ocular and retinal anatomy of seahorses and did not alter feeding success. Physical manipulation of animals by photographing scuba divers, however, elicited strong stress responses. This study provides important new information to help develop efficient management strategies that reduce environmental impacts of wildlife tourism.


Assuntos
Animais Selvagens/fisiologia , Conservação dos Recursos Naturais , Peixes/fisiologia , Fotografação , Animais , Animais Selvagens/anatomia & histologia , Mergulho , Humanos
7.
J Environ Manage ; 218: 14-22, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-29660542

RESUMO

Scuba diving tourism is a sustainable source of income for many coastal communities, but can have negative environmental impacts if not managed effectively. Diving on soft sediment habitats, typically referred to as 'muck diving', is a growing multi-million dollar industry with a strong focus on photographing cryptobenthic fauna. We assessed how the environmental impacts of scuba divers are affected by the activity they are engaged in while diving and the habitat they dive in. To do this, we observed 66 divers on coral reefs and soft sediment habitats in Indonesia and the Philippines. We found diver activity, specifically interacting with and photographing fauna, causes greater environmental disturbances than effects caused by certification level, gender, dive experience or age. Divers touched the substrate more often while diving on soft sediment habitats than on coral reefs, but this did not result in greater environmental damage on soft sediment sites. Divers had a higher impact on the substrate and touch animals more frequently when observing or photographing cryptobenthic fauna. When using dSLR-cameras, divers spent up to five times longer interacting with fauna. With the unknown, long-term impacts on cryptobenthic fauna or soft sediment habitats, and the increasing popularity of underwater photography, we argue for the introduction of a muck diving code of conduct.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Fotografação , Animais , Antozoários , Mergulho , Indonésia , Filipinas
8.
Conserv Biol ; 32(3): 706-715, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-28984998

RESUMO

As ecosystems come under increasing anthropogenic pressure, rare species face the highest risk of extinction. Paradoxically, data necessary to evaluate the conservation status of rare species are often lacking because of the challenges of detecting species with low abundance. One group of fishes subject to this undersampling bias are those with cryptic body patterns. Twenty-one percent of cryptic fish species assessed for their extinction risk (International Union for Conservation of Nature [IUCN]) are data deficient. We developed a nondestructive method for surveying cryptically patterned marine fishes based on the presence of biofluorescence (underwater biofluorescence census, UBC). Blue LED torches were used to investigate how widespread biofluorescence was in cryptic reef fishes in the Coral Triangle region. The effectiveness of UBC to generate abundance data was tested on a data-deficient pygmy seahorse species (Hippocampus bargibanti) and compared with data obtained from standard underwater visual census (UVC) surveys. We recorded 95 reef fish species displaying biofluorescence, 73 of which had not been previously described as biofluorescent. Of those fish with cryptic patterns, 87% were biofluorescent compared with 9% for noncryptic fishes. The probability of species displaying biofluorescence was 70.9 times greater for cryptic species than for noncryptic species. Almost twice the number of H. bargibanti was counted using the UBC compared with UVC. For 2 triplefin species (Ucla xenogrammus, Enneapterygius tutuilae), the abundance detected with UBC was triple that detected with UVC. The UBC method was effective at finding cryptic species that would otherwise be difficult to detect and thus will reduce interobserver variability inherent to UVC surveys. Biofluorescence is ubiquitous in cryptic fishes, making this method applicable across a wide range of species. Data collected using UBC could be used with multiple IUCN criteria to assess the extinction risk of cryptic species. Adopting this technique will enhance researchers' ability to survey cryptic species and facilitate management and conservation of cryptic marine species.


Assuntos
Recifes de Corais , Ecossistema , Animais , Conservação dos Recursos Naturais , Peixes , Inquéritos e Questionários
9.
Proc Biol Sci ; 283(1827): 20160277, 2016 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-27030417

RESUMO

Global marine biodiversity peaks within the Coral Triangle, and understanding how such high diversity is maintained is a central question in marine ecology. We investigated broad-scale patterns in the diversity of clownfishes and their host sea anemones by conducting 981 belt-transects at 20 locations throughout the Indo-Pacific. Of the 1508 clownfishes encountered, 377 fish occurred in interspecific cohabiting groups and cohabitation was almost entirely restricted to the Coral Triangle. Neither the diversity nor density of host anemone or clownfish species alone influenced rates of interspecific cohabitation. Rather cohabitation occurred in areas where the number of clownfish species exceeds the number of host anemone species. In the Coral Triangle, cohabiting individuals were observed to finely partition their host anemone, with the subordinate species inhabiting the periphery. Furthermore, aggression did not increase in interspecific cohabiting groups, instead dominant species were accepting of subordinate species. Various combinations of clownfish species were observed cohabiting (independent of body size, phylogenetic relatedness, evolutionary age, dentition, level of specialization) in a range of anemone species, thereby ensuring that each clownfish species had dominant reproductive individuals in some cohabiting groups. Clownfishes are obligate commensals, thus cohabitation is an important process in maintaining biodiversity in high diversity systems because it supports the persistence of many species when host availability is limiting. Cohabitation is a likely explanation for high species richness in other obligate commensals within the Coral Triangle, and highlights the importance of protecting these habitats in order to conserve unique marine biodiversity.


Assuntos
Biodiversidade , Perciformes/fisiologia , Anêmonas-do-Mar/fisiologia , Simbiose , Animais , Evolução Biológica , Tamanho Corporal , Recifes de Corais , Oceano Índico , Oceano Pacífico , Filogenia , Densidade Demográfica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...