Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(7)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37048962

RESUMO

In this research, the durability performance of sustainable concrete with the incorporation of reactive magnesium oxide (MgO) and fly ash (FA) was evaluated. The partial replacement of cement with these two materials is an appealing solution for the construction sector due to sustainability benefits and shrinkage reduction. The incorporation of FA by partial replacement of cement was carried out at 0%, 15% and 30%. The incorporation of MgO in concrete was carried out at 0%, 5%, 10% and 20%. Two types of MgO were used, one from Australia and another of Spanish origin. These two materials were evaluated in terms of their individual incorporation, and then an evaluation was carried out when the two were simultaneously used. In terms of durability, performance losses between 3% and 95% were obtained in all tests (water absorption by capillarity and immersion, carbonation depth and resistance to chloride penetration). However, over time, the difference in performance relative to the reference concrete tends to decrease due to the slow hydration that characterizes these two alternative materials. It was found that, in most of the tests, no overlapping of the negative effects occurred. In other words, the simultaneous incorporation of MgO and FA caused performance losses lower than the sum of the losses of their individual incorporation.

2.
Materials (Basel) ; 16(7)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37049055

RESUMO

In the construction industry, cement is the most widely used material. So, to achieve greater sustainability in this industry, it is imperative to improve the sustainability of this material. One way to reduce the ecological footprint of cement is to replace it, even if partially, with other more sustainable materials that can act as binders. This paper analyses the mechanical properties of more sustainable mortars containing recycled cement (RC), fly ash (FA), and magnesium oxide (MgO). Different types of binary, ternary, and quaternary mortars were used: containing recycled cement (5% and 10%), fly ash (10% and 20%), and MgO (7.5% and 15%). An experimental campaign was carried out analysing air content, density, compressive and flexural strengths, modulus of elasticity, and ultrasonic pulse velocity. The ternary mortars showed decreases between 0.4% (M-5RC10FA) and 35.3% (M-10RC15Mg) in terms of compressive strength at 365 days (compared to RM), when the theoretically expected decrease (the sum of the decreases obtained with the individual incorporation of these materials) would be between 16.6% and 41.5%, respectively. The results obtained allow for concluding that the joint use of these materials in ternary mortars improves the mechanical capacity, relative to the individual incorporation of each material in binary mortars.

3.
Materials (Basel) ; 16(8)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37109923

RESUMO

This paper presents a literature review on the effects of accelerated carbonation on alkali-activated materials. It attempts to provide a greater understanding of the influence of CO2 curing on the chemical and physical properties of various types of alkali-activated binders used in pastes, mortars, and concrete. Several aspects related to changes in chemistry and mineralogy have been carefully identified and discussed, including depth of CO2 interaction, sequestration, reactions with calcium-based phases (e.g., calcium hydroxide and calcium silicate hydrates and calcium aluminosilicate hydrates), as well as other aspects related to the chemical composition of alkali-activated materials. Emphasis has also been given to physical alterations such as volumetric changes, density, porosity, and other microstructural properties caused by induced carbonation. Moreover, this paper reviews the influence of the accelerated carbonation curing method on the strength development of alkali-activated materials, which has been awarded little attention considering its potential. This curing technique was found to contribute to the strength development mainly through decalcification of the Ca phases existing in the alkali-activated precursor, leading to the formation of CaCO3, which leads to microstructural densification. Interestingly, this curing method seems to have much to offer in terms of mechanical performance, making it an attractive curing solution that can compensate for the loss in performance caused by less efficient alkali-activated binders replacing Portland cement. Optimising the application of such CO2-based curing methods for each of the potential alkali-activated binders is recommended for future studies for maximum microstructural improvement, and thus mechanical enhancement, to make some of the "low-performing binders" adequate Portland cement substitutes.

4.
Materials (Basel) ; 16(5)2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36903038

RESUMO

Three industrial aluminosilicate wastes were studied as precursors to produce alkali-activated concrete: (i) electric arc furnace slag, (ii) municipal solid waste incineration bottom ashes, and (iii) waste glass rejects. These were characterized via X-ray diffraction and fluorescence, laser particle size distribution, thermogravimetric, and Fourier-transform infrared analyses. Distinctive combinations of anhydrous sodium hydroxide and sodium silicate solution were tried by varying the Na2O/binder ratio (8%, 10%, 12%, 14%) and SiO2/Na2O ratio (0, 0.5, 1.0, 1.5) to find the optimum solution for maximized mechanical performance. Specimens were produced and subjected to a three-step curing process: (1) 24 h thermal curing (70 °C), (2) followed by 21 days of dry curing in a climatic chamber (~21 °C, 65% RH), and (3) ending with a 7-day carbonation curing stage (5 ± 0.2% CO2; 65 ± 10% RH). Compressive and flexural strength tests were performed, to ascertain the mix with the best mechanical performance. The precursors showed reasonable bonding capabilities, thus suggesting some reactivity when alkali-activated due to the presence of amorphous phases. Mixes with slag and glass showed compressive strengths of almost 40 MPa. Most mixes required a higher Na2O/binder ratio for maximized performance, even though, contrary to expectations, the opposite was observed for the SiO2/Na2O ratio.

5.
Materials (Basel) ; 15(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36233878

RESUMO

Fly oil shale ash (FOSA) is a waste material known for its pozzolanic activity. This study intends to investigate the optimum thermal treatment conditions to use FOSA efficiently as a cement replacement material. FOSA samples were burned in an electric oven for 2, 4, and 6 h at temperatures ranging from 550 °C to 1000 °C with 150 °C intervals. A total of 333 specimens out of 37 different mixes were prepared and tested with cement replacement ratios between 10% and 30%. The investigated properties included the mineralogical characteristics, chemical elemental analysis, compressive strength, and strength activity index for mortar samples. The findings show that the content of SiO2 + Al2O3 + Fe2O3 was less than 70% in all samples. The strength activity index of the raw FOSA at 56 days exceeded 75%. Among all specimens, the calcined samples for 2 h demonstrated the highest pozzolanic activity and compressive strength with a 75% strength activity index. The model developed by RSM is suitable for the interpretation of FOSA in the cementitious matrix with high degrees of correlation above 85%. The optimal compressive strength was achieved at a 30% replacement level, a temperature of 700 °C for 2 h, and after 56 days of curing.

6.
Materials (Basel) ; 15(15)2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35955290

RESUMO

This study is framed within the circular economy model through the valorisation of industrial by-products. This research shows the results of producing self-compacting mortars (SCMs) with electric arc furnace dust (EAFD) and other industrial by-products such as fly ash, conforming (FA) or not conforming (NcFA), from coal-fired power plants, or recovery filler (RF) from hot-mix asphalt plants. Three batches of SCMs, each with one industrial-by product (FA, NcFA, or RF), and three levels of EAFD ratio incorporation (0%, 10%, 20%), were tested. An extra batch with a greater amount of FA was manufactured. When the incorporation ratio of EAFD rose, the mechanical strength decreased, due to the presence of a calcium zinc hydroxide dihydrate phase; nevertheless, this decrease diminished over time. All SCM mixes, except the 40C 40FA 20 EAFD mix, were above 20 MPa at 28 days. All mixes named 70C and 40C reached 40 and 30 MPa, respectively, at 90 days. Mixes with EAFD showed less capillarity and no difference in water absorption by immersion with respect to mixes without EAFD after 91 days. The SCMs designed proved to be stable in terms of leaching of the heavy metals contained in EAFD, where all the hardened SCMs were classified as inert.

7.
Materials (Basel) ; 15(10)2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35629536

RESUMO

Due to environmental concerns, the search for sustainable construction solutions has been increasing over the years. This global concern is creating a trend in the use of recycled aggregates resulting from construction and demolition wastes from different sources. In addition to their physical and mechanical properties, it is important to analyse their ecotoxicological risk to determine whether their leachates might be an issue. To assess ecotoxicity, biological tests should be performed for different trophic levels. This type of test is expensive and needs a high level of expertise, which leads to a lack of studies on recycled aggregates including ecotoxicity analysis. This paper presents a set of predictive ecotoxicity results based on the published studies on recycled aggregates. These results are the outcome of applying an innovative methodology previously developed and validated by the authors aiming to foresee the ecotoxicological fate of building materials' constituents and products. The application of this methodology enables the classification of a recycled aggregate product as safe or unsafe in terms of ecotoxicity risk, while keeping biological testing to a minimum.

8.
Materials (Basel) ; 14(19)2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34640143

RESUMO

This paper concerns the recovery of construction and demolition waste as coarse recycled aggregates for concrete. Coarse recycled aggregates may be used as a partial or total replacement of natural aggregates, contributing to the circular economy and minimizing landfill disposals as well as the consumption of natural mineral resources. However, construction and demolition waste is a heterogeneous material with undefined quality and the processing of this waste into recycled aggregates needs to ensure that the recycled aggregates have suitable properties for concrete. This paper summarizes several aspects related to coarse recycled aggregates, specifically addressing: (i) the typical composition of construction and demolition waste; (ii) the influence of different types of constituents on the properties of recycled aggregates and recycled aggregate concrete; (iii) requirements for recycled aggregates to be used in concrete; and (iv) production methods of recycled aggregates. It is argued that coarse recycled aggregates are a suitable construction material with adequate quality, even when common equipment is used in their production and preliminary separation as a key operation for ensuring the quality of the aggregates is recommended.

9.
Materials (Basel) ; 14(18)2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34576405

RESUMO

Steel-concrete-steel (SCS) sandwich panels are manufactured with two thin high-strength steel plates and a moderately low-density and low-strength thick concrete core. In this study, 24 specimens were produced and tested. In these specimens, a new stud-bolt connector was used to regulate its shear behaviour in sandwich panels. The bolts' diameter, concrete core's thickness and bolts' spacing were the parameters under analysis. Furthermore, the concrete core was manufactured with normal-strength concrete and steel fibres concrete (SFC). Steel fibres were added at 1% by volume. In addition, the recycled coarse aggregate was used at 100% in terms of mass instead of natural coarse aggregate. Therefore, the ultimate bearing capability and slip of the sandwich panels were recorded, and the failure mode and ductility index of the specimens were evaluated. A new formula was also established to determine the shear strength of SCS panels with this kind of connectors. According to this study, increasing the diameter of the stud-bolts or using SFC in sandwich panels improve their shear strength and ductility ratio.

10.
Materials (Basel) ; 14(18)2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34576678

RESUMO

The incorporation of recycled aggregates in concrete not only reduces the extraction of natural resources, but also decreases landfill disposal of construction and demolition waste. Hence, environmental impacts and costs are reduced, promoting the use of recycled aggregates and circular economy. However, the impacts of transport depend on the distance between facilities and longer distances may result in recycled aggregates being more costly and having larger environmental impact than natural aggregates. This paper discusses this topic, presents a review on the use of life cycle assessment methodology on natural and recycled aggregates for concrete, and applies this methodology in a real context pertaining the procurement of coarse aggregates to ready-mix concrete plants. A case study of two Portuguese regions, Coimbra and Lisbon, is presented. For each region, a quarry, a construction and demolition waste plant, and a ready-mix concrete plant are chosen and a comparative life cycle assessment is made. Different scenarios for the supply of natural and recycled aggregates are studied and the scenarios for recycled aggregates procurement include different hypotheses for the installation (construction and demolition waste plant or quarry) processing the construction and demolition waste into recycled aggregates. For this case study and both regions, it was found that the supply of recycled aggregates produced at the construction and demolition waste plant has lower environmental impact and cost than all other scenarios, including the provision of natural aggregates, except when it is assumed that the quarry is licensed and equipped for receiving unsorted construction and demolition waste and processing it into recycled aggregates. The paper shows that transport distance is a determining factor in the comparison of the impacts of the procurement of natural and recycled aggregates. Moreover, in the Portuguese context, the environmental impacts of the procurement of recycled aggregates may be smaller than those of natural aggregates, but cost may be larger for recycled aggregates, preventing that the most sustainable option is chosen.

11.
Materials (Basel) ; 14(15)2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34361275

RESUMO

This paper contributes to the definition of design clauses for coarse recycled aggregate concrete. One of the main reasons for scepticism towards recycled aggregate concrete is the perceived notion that the heterogeneity of recycled aggregates may increase the uncertainty of the behaviour of concrete. Therefore, the paper uses structural reliability concepts to propose partial factors for recycled aggregate concrete's design for shear failure. The paper builds upon a previous publication by the authors, in which the model uncertainty of recycled aggregate concrete elements designed for shear, with and without shear reinforcement, was compared with that of natural aggregate concrete elements. In that paper, the statistics of the model uncertainty for recycled aggregate concrete shear design were indeed found to be less favourable than those of natural aggregate concrete. Therefore, a partial factor for recycled aggregate concrete design is needed to ensure safety. This paper presents partial factors calibrated with explicit reliability analyses for different cases of design concerning beams (in the case of shear design of elements with shear reinforcement) and slabs (for the design of elements without shear reinforcement). For full incorporation of coarse recycled concrete aggregates and the design of elements without shear reinforcement, the calibrated partial factor reduces the design value of shear resistance by 10% (design with EN1992) or 15% (design with prEN1992) in comparison to natural aggregate concrete's design. For the shear design of elements with shear reinforcement, the partial factor decreases resistance by 5% but a sensitivity analysis showed that the reduction might be, under pessimistic expectations, of up to 20%.

12.
Materials (Basel) ; 14(4)2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33669426

RESUMO

This paper intends to analyze the performance of mortars with reactive MgO, as a sustainable alternative to cement. Six different MgOs from Australia, Canada, and Spain were used in the production of mortars as partial substitutes for cement, namely 5%, 10%, 15%, 20%, and 25% (by weight). MgOs with different levels of reactivity were used to analyze its influence on the performance of MgO mortars. In order to evaluate the mechanical performance of these mortars, compressive strength, flexural strength, dynamic modulus of elasticity, and ultrasonic pulse velocity tests were performed. Compressive strength tests showed that the use of 25% reactive MgO can cause a decrease of this property of between 28% and 49%. The use of reactive MgO affected the other mechanical properties less. This paper also intends to analyze the durability performance of mortars with reactive MgO. To that effect, water absorption by capillarity was assessed. In this research, the effect of using MgO on the shrinkage was also analyzed. It was found that shrinkage may decrease by more than a half in some cases.

13.
Materials (Basel) ; 14(4)2021 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-33572182

RESUMO

Coir fiber is a by-product waste generated in large scale. Considering that most of these wastes do not have a proper disposal, several applications to coir fibers in engineering have been investigated in order to provide a suitable use, since coir fibers have interesting properties, namely high tensile strength, high elongation at break, low modulus of elasticity, and high abrasion resistance. Currently, coir fiber is widely used in concrete, roofing, boards and panels. Nonetheless, only a few studies are focused on the incorporation of coir fibers in rendering mortars. This work investigates the feasibility to incorporate coir fibers in rendering mortars with two different binders. A cement CEM II/B-L 32.5 N was used at 1:4 volumetric cement to aggregate ratio. Cement and air-lime CL80-S were used at a volumetric ratio of 1:1:6, with coir fibers were produced with 1.5 cm- and 3.0 cm-long fibers and added at 10% and 20% by total mortar volume. Physical and mechanical properties of the coir fiber-reinforced mortars were discussed. The addition of coir fibers reduced the workability of the mortars, requiring more water that affected the hardened properties of the mortars. The modulus of elasticity and the compressive strength of the mortars with coir fibers decreased with increase in fiber volume fraction and length. Coir fiber's incorporation improved the flexural strength and the fracture toughness of the mortars. The results emphasize that the cement-air-lime based mortars presented a better post-peak behavior than that of the cementitious mortars. These results indicate that the use of coir fibers in rendering mortars presents a potential technical and sustainable feasibility for reinforcement of cement and cement-air-lime mortars.

14.
Materials (Basel) ; 13(19)2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32977488

RESUMO

The possibility of using recycled aggregates from construction and demolition waste (CDW) in concrete is rather widely agreed upon when it comes to the use of coarse recycled aggregates. However, this is not the case when fine recycled aggregates (FRA) are considered, as it is deemed that these seriously impair the behaviour of concrete. Hence, this work presents a technical specification proposal for the use of FRA from CDW in concrete, to attempt to fill this gap in legislation. The specification is based on a wide collection of experimental results, from which it is shown that for low incorporation ratios (up to 25%), the properties of concrete with FRA from CDW are comparable to those of a reference concrete. The intended international scope of the specification is ensured by the fact that FRA from CDW are typified by composition (percentage of concrete, masonry, glass, etc.) rather than by geographical origin or construction type. It is shown that, after typifying the FRA and assuming, as per design, the acceptable percentage losses (relative to a reference concrete) of mechanical, durability-related and long-term physical properties, if the maximum incorporation ratios proposed of each type of FRA are used, the variation of properties remains within the limits established.

15.
Materials (Basel) ; 13(15)2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32756531

RESUMO

In the light of one of the most common waste management issues in urban areas, namely the elimination of municipal solid waste (MSW; about 486 kg of the waste per capita were generated in the EU in 2017), this study discusses one technique as an outlet in the construction industry for the by-product of the waste's incineration in energy recovery facilities (i.e., MSW incinerator bottom ash-MIBA). There have been some investigations on the use of MIBA as partial replacement of cement to be used in cementitious composites, such as concrete and mortars. However, the waste's incorporation ratio is limited since further products of hydration may not be produced after a given replacement level and can lead to an unsustainable decline in performance. In order to maximize the incorporation of MIBA, some research studies have been conducted on the alkali activation of the waste as precursor. Thus, this study presents an extensive literature review of the most relevant investigations on the matter to understand the material's applicability in construction. It analyses the performance of the alkali-activated MIBA as paste, mortar, and concrete from different perspectives. This literature review was made using search engines of several databases. In each database, the same search options were repeated using combinations of various representative keywords. Furthermore, several boundaries were made to find the most relevant studies for further inspection. The main findings of this review have shown that the chemical composition and reactivity of MIBA vary considerably, which may compromise performance comparison, standardization and commercialization. There are several factors that affect the performance of the material that need to be considered, e.g., type and content of precursor, alkaline activator, curing temperature and time, liquid to solid ratio, among others. MIBA-based alkali-activated materials (AAM) can be produced with a very wide range of compressive strength (0.3-160 MPa). The main factor affecting the performance of this precursor is the existence of metallic aluminum (Al), which leads to damaging expansive reactions and an increase in porosity due to hydrogen gas generation stemming from the reaction with the alkaline activator. Several approaches have been proposed to eliminate this issue. The most effective solution was found to be the removal of Al by means of eddy current electromagnetic separation.

16.
Materials (Basel) ; 13(14)2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32650397

RESUMO

The use of gypsum as an indoor coating material for buildings is very extensive. This means that huge amounts of gypsum waste are generated daily worldwide. Therefore, many researchers in the last years have been working on the generation of new gypsum-related materials and products that incorporate recycled gypsum waste as a replacement for the commercial one. On the other hand, trying to reduce the large amounts of plastic generated globally each year, several studies have used different types of plastic waste as aggregates for the development of new construction and building materials. However, up to now, no previous studies have been found in which any type of plastic waste has been used as an aggregate in a recycled gypsum matrix. This paper presents a study in which two different types of waste were mixed for the development of new gypsum plasters: unheated gypsum waste from industrial plasterboard production (GPW) and polycarbonate (PC) waste from rejected compact discs (CDs) and digital versatile discs (DVDs). In this sense, the mechanical and thermal performance of plasters was evaluated. Finally, in order to evaluate the changes in the microstructure of the composites, a scanning electron microscopy (SEM) analysis was conducted. The results showed a good performance of the new composites when both types of waste were combined in the mixes. New lightweight eco-efficient plasters, completely recycled, with enhanced flexural strength (by 14.8%), compressive strength (by 26.8%), and thermal conductivity (42.8% less), compared to the reference material, were achieved.

17.
Materials (Basel) ; 13(11)2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-32526866

RESUMO

Alkali-silica reaction (ASR) is one of the major degradation causes of concrete. This highly deleterious reaction has aroused the attention of researchers, in order to develop methodologies for its prevention and mitigation, but despite the efforts made, there is still no efficient cure to control its expansive consequences. The incorporation of recycled aggregates in concrete raises several ASR issues, mainly due to the difficult control of the source concrete reactivity level and the lack of knowledge on ASR's evolution in new recycled aggregate concrete. This paper reviews several research works on ASR in concrete with recycled aggregates, and the main findings are presented in order to contribute to the knowledge and discussion of ASR in recycled aggregate concrete. It has been observed that age, exposure conditions, crushing and the heterogeneity source can influence the alkalis and reactive silica contents in the recycled aggregates. The use of low contents of highly reactive recycled aggregates as a replacement for natural aggregates can be done without an increase in expansion of concrete. ASR expansion tests and ASR mitigation measures need to be further researched to incorporate a higher content of recycled aggregates.

18.
Materials (Basel) ; 13(8)2020 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-32340288

RESUMO

This paper presents a study of incorporation of two types of construction and demolition waste (CDW) in rendering mortars, as aggregates at 0%, 20%, 50% and 100% (by volume). Recycled concrete aggregate (RCA) and mixed recycled aggregate (MRA) were used. The former is mainly composed of cementitious waste and the latter consists of a mixture of non-segregated wastes. The performance of the cement mortars with recycled aggregates was evaluated through an extensive experimental programme. The analysis comprised workability, mechanical strength, water absorption, shrinkage, open porosity and the evaluation of durability by permeability to water under pressure after an artificial accelerated ageing test. The results are considered positive, although as the incorporation of recycled aggregates (both MRA and RCA) increased the mechanical strength, the modulus of elasticity and bulk density decreased, which leads to the production of lighter mortars that are less susceptible to cracking. The modified mortar with 20% of MRA presented the best performance, in terms of mechanical behaviour.

19.
Materials (Basel) ; 12(21)2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31671652

RESUMO

The urgent need to change the less positive impacts of the construction industry on the environment, and more specifically the production and use of concrete, is the main motivation for the research for more efficient and environmentally sustainable solutions. This paper presented the results of an experimental campaign whose ultimate goal was to produce high-performance self-compacting concrete (SCC) using recycled aggregates (RA) from the precast industry. The results of the fresh-state and mechanical properties tests performed on six concrete mixes (using RA from the precast industry) were presented. The first concrete mix is a reference mix using natural aggregates only (100% NA), and the remaining five mixes had various contents of fine (FRA) and coarse (CRA) recycled aggregates in concrete's composition: (2) 25/25% (25% RA); (3) 50/50% (50% RA); (4) 100/100% (100% RA); (5) 0/100% (100% CRA); (6) 100/0% (100% FRA). The results showed that the high-performance concrete mixes with RA from the precast industry performed worse than the reference mix. However, taking into account all the mechanical properties studied, it can be concluded that RA from precast concrete elements are of very good quality and can be incorporated in the production of high-performance SCC. The potential demonstrated by the combined use of fine and coarse recycled aggregates was also emphasized. This type of work is expected to effectively contribute to raise awareness among the various players in the construction industry, particularly in the precast concrete industry, to the feasibility of using RA in significant quantities (notably coarse aggregates) and to the safety needed to assume structural functions, even for applications where high performance is required.

20.
Materials (Basel) ; 12(22)2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31698732

RESUMO

The susceptibility of rendering mortars to cracking is a complex phenomenon. Fibers have been incorporated in mortars to ensure the durability of the render and can improve the flexural strength, fracture toughness, and impact resistance of the mortars. Aside from the better cracking performance of fiber reinforced mortars, natural fibers have been a path to reducing the environmental impacts of construction materials. Recycling has high sustainability-related potential as it can both mitigate the amount of waste being inadequately disposed and reduce the consumption of natural raw materials. Studies on the incorporation of waste in civil engineering materials have been growing, and recycled fibers may be feasible to incorporate in mortars. Natural fibers are considered as a viable replacement for synthetic ones. Several studies have investigated vegetal fibers in cementitious composites. However, only a few have focused on the incorporation of waste animal-based fiber. The aim of this work is to analyze the feasibility of the use of natural sheep's wool fibers on the reinforcement of mortars and in particular to improve their cracking behavior. For this purpose, two different binders were used: cement and cement-lime mortars were produced. The incorporation of 10% and 20% (in volume) of 1.5 cm and 3.0 cm wool fibers was analyzed. The results show that the incorporation of wool fibers increased the ductility of the mortars and improved their mechanical properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...