Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Microbiol ; 9(3): 864-876, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38443579

RESUMO

The industrial yeast Komagataella phaffii (formerly named Pichia pastoris) is commonly used to synthesize recombinant proteins, many of which are used as human therapeutics or in food. However, the basic strain, named NRRL Y-11430, from which all commercial hosts are derived, is not available without restrictions on its use. Comparative genome sequencing leaves little doubt that NRRL Y-11430 is derived from a K. phaffii type strain deposited in the UC Davis Phaff Yeast Strain Collection in 1954. We analysed four equivalent type strains in several culture collections and identified the NCYC 2543 strain, from which we started to develop an open-access Pichia chassis strain that anyone can use to produce recombinant proteins to industry standards. NRRL Y-11430 is readily transformable, which we found to be due to a HOC1 open-reading-frame truncation that alters cell-wall mannan. We introduced the HOC1 open-reading-frame truncation into NCYC 2543, which increased the transformability and improved secretion of some but not all of our tested proteins. We provide our genome-sequenced type strain, the hoc1tr derivative that we named OPENPichia as well as a synthetic, modular expression vector toolkit under liberal end-user distribution licences as an unencumbered OPENPichia resource for the microbial biotechnology community.


Assuntos
Parede Celular , Microbiota , Saccharomycetales , Humanos , Alimentos , Proteínas Recombinantes/genética
2.
J Microsc ; 293(2): 118-131, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38149687

RESUMO

In this study, transmission electron microscopy (TEM) and cryo-scanning electron microscopy (cryo-SEM) were evaluated for their ability to detect lipid bodies in microalgae. To do so, Phaeodactylum tricornutum and Nannochloropsis oculata cells were harvested in both the mid-exponential and early stationary growth phase. Two different cryo-SEM cutting methods were compared: cryo-planing and freeze-fracturing. The results showed that, despite the longer preparation time, TEM visualisation preceded by cryo-immobilisation allows a clear detection of lipid bodies and is preferable to cryo-SEM. Using freeze-fracturing, lipid bodies were rarely detected. This was only feasible if crystalline layers in the internal structure, most likely related to sterol esters or di-saturated triacylglycerols, were revealed. Furthermore, lipid bodies could not be detected using cryo-planing. Cryo-SEM is also not the preferred technique to recognise other organelles besides lipid bodies, yet it did reveal chloroplasts in both species and filament-containing organelles in cryo-planed Nannochloropsis oculata samples.


Assuntos
Microalgas , Gotículas Lipídicas , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Microscopia Crioeletrônica/métodos
3.
Methods Cell Biol ; 177: 33-54, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37451773

RESUMO

Serial Block Face Scanning Electron Microscopy (SBF-SEM) is one of several volume electron microscopy (vEM) techniques whose purpose is to reveal the nanostructure of cells and tissues in three dimensions. As one of the earliest, and possibly most widely adopted of the disruptive vEM techniques there have been hundreds of publications using the method, although very few comparative studies of specimen preparation parameters. While some studies have focused on staining and specimen acquisition no comparison of resin embedding has yet been conducted. To this end we have surveyed the SBF-SEM literature to determine which resins are commonly used and compared them in both cellular and fixed tissue samples in an attempt to optimize sample preparation for: effectiveness of resin infiltration, resistance to charging and beam damage and clarity of image in the resulting data set. Here we present the results and discuss the various factors that go into optimizing specimen preparation for SBF-SEM.


Assuntos
Imageamento Tridimensional , Microscopia Eletrônica de Volume , Microscopia Eletrônica de Varredura , Imageamento Tridimensional/métodos , Manejo de Espécimes/métodos
4.
Am J Hum Genet ; 109(12): 2230-2252, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36351433

RESUMO

EMILIN1 (elastin-microfibril-interface-located-protein-1) is a structural component of the elastic fiber network and localizes to the interface between the fibrillin microfibril scaffold and the elastin core. How EMILIN1 contributes to connective tissue integrity is not fully understood. Here, we report bi-allelic EMILIN1 loss-of-function variants causative for an entity combining cutis laxa, arterial tortuosity, aneurysm formation, and bone fragility, resembling autosomal-recessive cutis laxa type 1B, due to EFEMP2 (FBLN4) deficiency. In both humans and mice, absence of EMILIN1 impairs EFEMP2 extracellular matrix deposition and LOX activity resulting in impaired elastogenesis, reduced collagen crosslinking, and aberrant growth factor signaling. Collagen fiber ultrastructure and histopathology in EMILIN1- or EFEMP2-deficient skin and aorta corroborate these findings and murine Emilin1-/- femora show abnormal trabecular bone formation and strength. Altogether, EMILIN1 connects elastic fiber network with collagen fibril formation, relevant for both bone and vascular tissue homeostasis.


Assuntos
Doenças Ósseas Metabólicas , Cútis Laxa , Animais , Humanos , Camundongos , Colágeno/genética , Cútis Laxa/genética , Elastina/metabolismo , Proteínas da Matriz Extracelular/metabolismo
5.
Traffic ; 22(3): 48-63, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33263222

RESUMO

The structural organization of the Golgi stacks in mammalian cells is intrinsically linked to function, including glycosylation, but the role of morphology is less clear in lower eukaryotes. Here we investigated the link between the structural organization of the Golgi and secretory pathway function using Pichia pastoris as a model system. To unstack the Golgi cisternae, we disrupted 18 genes encoding proteins in the secretory pathway without loss of viability. Using biosensors, confocal microscopy and transmission electron microscopy we identified three strains with irreversible perturbations in the stacking of the Golgi cisternae, all of which had disruption in genes that encode proteins with annotated function as or homology to calcium/calcium permeable ion channels. Despite this, no variation in the secretory pathway for ER size, whole cell glycomics or recombinant protein glycans was observed. Our investigations showed the robust nature of the secretory pathway in P. pastoris and suggest that Ca2+ concentration, homeostasis or signalling may play a significant role for Golgi stacking in this organism and should be investigated in other organisms.


Assuntos
Complexo de Golgi , Saccharomyces cerevisiae , Animais , Complexo de Golgi/metabolismo , Proteínas/metabolismo , Saccharomycetales , Via Secretória
6.
EMBO Mol Med ; 12(10): e11917, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-32914580

RESUMO

The cytokine TNF drives inflammatory diseases, e.g., Crohn's disease. In a mouse model of TNF-induced systemic inflammatory response syndrome (SIRS), severe impact on intestinal epithelial cells (IECs) is observed. Zinc confers complete protection in this model. We found that zinc no longer protects in animals which lack glucocorticoids (GCs), or express mutant versions of their receptor GR in IECs, nor in mice which lack gut microbiota. RNA-seq studies in IECs showed that zinc caused reduction in expression of constitutive (STAT1-induced) interferon-stimulated response (ISRE) genes and interferon regulatory factor (IRF) genes. Since some of these genes are involved in TNF-induced cell death in intestinal crypt Paneth cells, and since zinc has direct effects on the composition of the gut microbiota (such as several Staphylococcus species) and on TNF-induced Paneth cell death, we postulate a new zinc-related anti-inflammatory mechanism. Zinc modulates the gut microbiota, causing less induction of ISRE/IRF genes in crypt cells, less TNF-induced necroptosis in Paneth cells, and less fatal evasion of gut bacteria into the system.


Assuntos
Interferons , Zinco , Animais , Morte Celular , Mucosa Intestinal , Camundongos , Celulas de Paneth
7.
Eur J Protistol ; 73: 125688, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32143143

RESUMO

The molecular divergence, morphology and pathology of a cryptic gregarine that is related to the bee parasite Apicystis bombi Lipa and Triggiani, 1996 is described. The 18S ribosomal DNA gene sequence of the new gregarine was equally dissimilar to that of A. bombi and the closest related genus Mattesia Naville, 1930, although phylogenetic analysis supported a closer relation to A. bombi. Pronounced divergence with A. bombi was found in the ITS1 sequence (69.6% similarity) and seven protein-coding genes (nucleotide 78.05% and protein 90.2% similarity). The new gregarine was isolated from a Bombus pascuorum Scopoli, 1763 female and caused heavy hypertrophism of the fat body tissue in its host. In addition, infected cells of the hypopharyngeal gland tissue, an important excretory organ of the host, were observed. Mature oocysts were navicular in shape and contained four sporozoites, similar to A. bombi oocysts. Given these characteristics, we proposed the name Apicystis cryptica sp. n. Detections so far indicated that distribution and host species occupation of Apicystis spp. overlap at least in Europe, and that historical detections could not discriminate between them. Specific molecular assays were developed that can be implemented in future pathogen screens that aim to discriminate Apicystis spp. in bees.


Assuntos
Apicomplexa/classificação , Abelhas/parasitologia , Animais , Apicomplexa/citologia , Apicomplexa/genética , DNA de Protozoário/genética , Europa (Continente) , Corpo Adiposo/parasitologia , Oocistos/citologia , Especificidade da Espécie
8.
Anal Chim Acta ; 1106: 22-32, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32145852

RESUMO

Analytical capabilities of Nanoscopic Secondary Ion Mass Spectrometry (nano-SIMS) and Synchrotron Radiation based X-ray Fluorescence (SR nano-XRF) techniques were compared for nanochemical imaging of polymorphonuclear human neutrophils (PMNs). PMNs were high pressure frozen (HPF), cryo-substituted, embedded in Spurr's resin and cut in thin sections (500 nm and 2 µm for both techniques resp.) Nano-SIMS enabled nanoscale mapping of isotopes of C, N, O, P and S, while SR based nano-XRF enabled trace level imaging of metals like Ca, Mn, Fe, Ni, Cu and Zn at a resolution of approx. 50 nm. The obtained elemental distributions were compared with those of whole, cryofrozen PMNs measured at the newly developed ID16A nano-imaging beamline at the European Synchrotron Radiation Facility (ESRF) in Grenoble, France. Similarities were observed for elements more tightly bound to the cell structure such as phosphorus and sulphur, while differences for mobile ions such as chlorine and potassium were more pronounced. Due to the observed elemental redistribution of mobile ions such as potassium and chlorine, elemental analysis of high pressure frozen (HPF), cryo-substituted and imbedded cells should be interpreted critically. Although decreasing analytical sensitivity occurs due to the presence of ice, analysis of cryofrozen cells - close to their native state - remains the golden standard. In general, we found nanoscale secondary ion mass spectrometry (nano-SIMS) and synchrotron radiation based nanoscopic X-ray fluorescence (SR nano-XRF) to be two supplementary alternatives for nanochemical imaging of single cells at the nanoscale.


Assuntos
Neutrófilos/citologia , Imagem Óptica , Análise de Célula Única , Espectrometria de Massa de Íon Secundário , Síncrotrons , Humanos , Tamanho da Partícula , Espectrometria por Raios X , Propriedades de Superfície
9.
Genes (Basel) ; 10(7)2019 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-31336972

RESUMO

Occipital horn syndrome (OHS) is a rare connective tissue disorder caused by pathogenic variants in ATP7A, encoding a copper transporter. The main clinical features, including cutis laxa, bony exostoses, and bladder diverticula are attributed to a decreased activity of lysyl oxidase (LOX), a cupro-enzyme involved in collagen crosslinking. The absence of large case series and natural history studies precludes efficient diagnosis and management of OHS patients. This study describes the clinical and molecular characteristics of two new patients and 32 patients previously reported in the literature. We report on the need for long-term specialized care and follow-up, in which MR angiography, echocardiography and spirometry should be incorporated into standard follow-up guidelines for OHS patients, next to neurodevelopmental, orthopedic and urological follow-up. Furthermore, we report on ultrastructural abnormalities including increased collagen diameter, mild elastic fiber abnormalities and multiple autophagolysosomes reflecting the role of lysyl oxidase and defective ATP7A trafficking as pathomechanisms of OHS.


Assuntos
Cútis Laxa/patologia , Síndrome de Ehlers-Danlos/patologia , Adolescente , Adulto , Criança , Pré-Escolar , Colágeno/metabolismo , ATPases Transportadoras de Cobre/genética , Cútis Laxa/enzimologia , Cútis Laxa/genética , Divertículo/patologia , Síndrome de Ehlers-Danlos/enzimologia , Síndrome de Ehlers-Danlos/genética , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Proteína-Lisina 6-Oxidase/metabolismo , Bexiga Urinária/anormalidades , Bexiga Urinária/patologia , Adulto Jovem
10.
Anal Bioanal Chem ; 411(19): 4999, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30923858

RESUMO

The authors would like to call the reader's attention to the fact that unfortunately the originally provided affiliation for Dr. Tomoko Asaoka was not correct.

11.
Anal Bioanal Chem ; 411(19): 4849-4859, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30790022

RESUMO

This paper describes a workflow towards the reconstruction of the three-dimensional elemental distribution profile within human cervical carcinoma cells (HeLa), at a spatial resolution down to 1 µm, employing state-of-the-art laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) instrumentation. The suspended cells underwent a series of fixation/embedding protocols and were stained with uranyl acetate and an Ir-based DNA intercalator. A priori, laboratory-based absorption micro-computed tomography (µ-CT) was applied to acquire a reference frame of the morphology of the cells and their spatial distribution before sectioning. After CT analysis, a trimmed 300 × 300 × 300 µm3 block was sectioned into a sequential series of 132 sections with a thickness of 2 µm, which were subjected to LA-ICP-MS imaging. A pixel acquisition rate of 250 pixels s-1 was achieved, through a bidirectional scanning strategy. After acquisition, the two-dimensional elemental images were reconstructed using the timestamps in the laser log file. The synchronization of the data required an improved optimization algorithm, which forces the pixels of scans in different ablation directions to be spatially coherent in the direction orthogonal to the scan direction. The volume was reconstructed using multiple registration approaches. Registration using the section outline itself as a fiducial marker resulted into a volume which was in good agreement with the morphology visualized in the µ-CT volume. The 3D µ-CT volume could be registered to the LA-ICP-MS volume, consisting of 2.9 × 107 voxels, and the nucleus dimensions in 3D space could be derived.


Assuntos
Espectrometria de Massas/métodos , Análise de Célula Única/métodos , Células HeLa , Humanos , Microtomografia por Raio-X
12.
ACS Macro Lett ; 8(2): 172-176, 2019 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-35619425

RESUMO

Buckminsterfullerene (C60) has a large potential for biomedical applications. However, the main challenge for the realization of its biomedical application potential is to overcome its extremely low water solubility. One approach is the coformulation with biocompatible water-soluble polymers, such as poly(2-oxazoline)s (PAOx), to form water-soluble C60 nanoparticles (NPs). However, uniform and defined NPs have only been obtained via a thin film hydration method or using cyclodextrin-functionalized PAOx. Here, we report the mechanochemical preparation of defined and stable C60:PAOx NPs by the introduction of a simple alkyne group as a polymer end-group. The presence of this alkyne bond is proven to be crucial in the mechanochemical synthesis of stable, defined sub-100 nm C60:PAOx NPs, with high C60 content up to 8.9 wt %.

13.
Plant Physiol ; 179(1): 74-87, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30301776

RESUMO

Polyploidization has played a key role in plant breeding and crop improvement. Although its potential to increase biomass yield is well described, the effect of polyploidization on biomass composition has largely remained unexplored. Here, we generated a series of Arabidopsis (Arabidopsis thaliana) plants with different somatic ploidy levels (2n, 4n, 6n, and 8n) and performed rigorous phenotypic characterization. Kinematic analysis showed that polyploids developed slower compared to diploids; however, tetra- and hexaploids, but not octaploids, generated larger rosettes due to delayed flowering. In addition, morphometric analysis of leaves showed that polyploidy affected epidermal pavement cells, with increased cell size and reduced cell number per leaf blade with incrementing ploidy. However, the inflorescence stem dry weight was highest in tetraploids. Cell wall characterization revealed that the basic somatic ploidy level negatively correlated with lignin and cellulose content, and positively correlated with matrix polysaccharide content (i.e. hemicellulose and pectin) in the stem tissue. In addition, higher ploidy plants displayed altered sugar composition. Such effects were linked to the delayed development of polyploids. Moreover, the changes in polyploid cell wall composition promoted saccharification yield. The results of this study indicate that induction of polyploidy is a promising breeding strategy to further tailor crops for biomass production.


Assuntos
Arabidopsis/genética , Desenvolvimento Vegetal/genética , Poliploidia , Arabidopsis/crescimento & desenvolvimento , Biomassa , Parede Celular/genética , Parede Celular/metabolismo , Celulose/metabolismo , Lignina/metabolismo , Fenótipo , Folhas de Planta
14.
J Antimicrob Chemother ; 73(9): 2323-2330, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29901811

RESUMO

Background: Streptococcus anginosus, Pseudomonas aeruginosa and Staphylococcus aureus are often co-isolated from the sputum of cystic fibrosis patients. It was recently shown that S. anginosus is protected from the activity of vancomycin when it grows in a multispecies biofilm with P. aeruginosa and S. aureus. Objectives: Elucidating the underlying cause of the reduced susceptibility of S. anginosus to vancomycin when growing in a multispecies biofilm with P. aeruginosa and S. aureus. Methods: The transcriptome of S. anginosus growing in a multispecies biofilm was compared with that of a S. anginosus monospecies biofilm. Subsequently, transmission electron microscopy was performed to investigate changes in cell wall morphology in S. anginosus and S. aureus in response to growth in multispecies biofilm and to vancomycin treatment. Results: S. anginosus responds to growth in a multispecies biofilm with induction of genes involved in cell envelope biogenesis. Cell walls of S. anginosus cultured in a multispecies biofilm were thicker than in a monospecies biofilm, without antibiotic challenge. S. aureus, when cultured in a multispecies biofilm, does not respond to vancomycin treatment with cell wall thickening. Conclusions: Growth in multispecies biofilms can have an impact on the expression of genes related to cell wall synthesis and on the cell wall thickness of S. anginosus.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Streptococcus anginosus/efeitos dos fármacos , Resistência a Vancomicina , Vancomicina/farmacologia , Biofilmes/crescimento & desenvolvimento , Parede Celular/metabolismo , Parede Celular/ultraestrutura , Perfilação da Expressão Gênica , Consórcios Microbianos/efeitos dos fármacos , Microscopia Eletrônica de Transmissão , Pseudomonas aeruginosa/crescimento & desenvolvimento , Staphylococcus aureus/crescimento & desenvolvimento , Streptococcus anginosus/genética , Streptococcus anginosus/crescimento & desenvolvimento , Streptococcus anginosus/ultraestrutura
15.
Int J Pharm ; 541(1-2): 108-116, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29409747

RESUMO

It was the aim of this study to elucidate the impact of the injection mold temperature upon the polymer crystallinity, its microstructure and the resulting drug release from immediate and sustained release tablets containing semi-crystalline polymers. The immediate release formulation contained 20% (w/w) ketoprofen (KETO) in poly (ethylene oxide) (PEO) and the sustained release formulation contained 20-40% (w/w) metoprolol tartrate (MPT) in polycaprolactone (PCL). Physical mixtures of drug-polymer were characterized via isothermal crystallization experiments using DSC and rheological measurements to elucidate the impact of the drug solid-state upon the crystallization kinetics. Tablets were prepared using various thermal histories (extrusion barrel temperature and injection mold temperatures). Polymer crystallinity and microstructure in the tablets was characterized via DSC and polarized optical microscopy. The polymer microstructure was altered by the various applied thermal histories. The differences in PEO crystallinity induced by the various mold temperatures did not affect the KETO dissolution from the tablets. On the other hand, MPT (20-40% w/w) dissolution from the PCL matrix when extruded at 80 °C and injection molded at 25 and 35 °C was significantly different due to the changes in the polymer microstructure. More perfect polymer crystals are obtained with higher mold temperatures, decreasing the drug diffusion rate through the PCL matrix. The results presented in this study imply that the injection mold temperature should be carefully controlled for sustained release formulations containing hydrophobic semi-crystalline polymers.


Assuntos
Preparações de Ação Retardada/farmacocinética , Composição de Medicamentos/métodos , Polímeros/química , Química Farmacêutica , Cristalização , Preparações de Ação Retardada/química , Liberação Controlada de Fármacos , Excipientes/química , Interações Hidrofóbicas e Hidrofílicas , Cetoprofeno/administração & dosagem , Cetoprofeno/farmacocinética , Metoprolol/administração & dosagem , Metoprolol/farmacocinética , Modelos Químicos , Solubilidade , Comprimidos , Temperatura
16.
J Invest Dermatol ; 138(6): 1268-1278, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29317263

RESUMO

In humans, receptor-interacting protein kinase 4 (RIPK4) mutations can lead to the autosomal recessive Bartsocas-Papas and popliteal pterygium syndromes, which are characterized by severe skin defects, pterygia, as well as clefting. We show here that the epithelial fusions observed in RIPK4 full knockout (KO) mice are E-cadherin dependent, as keratinocyte-specific deletion of E-cadherin in RIPK4 full KO mice rescued the tail-to-body fusion and fusion of oral epithelia. To elucidate RIPK4 function in epidermal differentiation and development, we generated epidermis-specific RIPK4 KO mice (RIPK4EKO). In contrast to RIPK4 full KO epidermis, RIPK4EKO epidermis was normally stratified and the outside-in skin barrier in RIPK4EKO mice was largely intact at the trunk, in contrast to the skin covering the head and the outer end of the extremities. However, RIPK4EKO mice die shortly after birth due to excessive water loss because of loss of tight junction protein claudin-1 localization at the cell membrane, which results in tight junction leakiness. In contrast, mice with keratinocyte-specific RIPK4 deletion during adult life remain viable. Furthermore, our data indicate that epidermis-specific deletion of RIPK4 results in delayed keratinization and stratum corneum maturation and altered lipid organization and is thus indispensable during embryonic development for the formation of a functional inside-out epidermal barrier.


Assuntos
Membrana Celular/patologia , Epiderme/crescimento & desenvolvimento , Proteínas Serina-Treonina Quinases/metabolismo , Perda Insensível de Água/fisiologia , Animais , Caderinas/metabolismo , Diferenciação Celular , Linhagem Celular , Embrião de Mamíferos , Epiderme/patologia , Humanos , Queratinócitos/citologia , Queratinócitos/patologia , Queratinócitos/ultraestrutura , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Proteínas Serina-Treonina Quinases/genética , RNA Interferente Pequeno/metabolismo , Junções Íntimas/patologia , Junções Íntimas/ultraestrutura
17.
PLoS One ; 13(1): e0190495, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29342155

RESUMO

Synchrotron radiation based nanoscopic X-ray fluorescence (SR nano-XRF) analysis can visualize trace level elemental distribution in a fully quantitative manner within single cells. However, in-air XRF analysis requires chemical fixation modifying the cell's chemical composition. Here, we describe first nanoscopic XRF analysis upon cryogenically frozen (-150°C) fibroblasts at the ID16A-NI 'Nano-imaging' end-station located at the European Synchrotron Radiation Facility (ESRF) in Grenoble (France). Fibroblast cells were obtained from skin biopsies from control and Friedreich's ataxia (FRDA) patients. FRDA is an autosomal recessive disorder with dysregulation of iron metabolism as a key feature. By means of the X-ray Fundamental Parameter (FP) method, including absorption correction of the ice layer deposited onto the fibroblasts, background-corrected mass fraction elemental maps of P, S, Cl, K, Ca, Fe and Zn of entire cryofrozen human fibroblasts were obtained. Despite the presence of diffracting microcrystals in the vitreous ice matrix and minor sample radiation damage effects, clusters of iron-rich hot-spots with similar mass fractions were found in the cytoplasm of both control and FRDA fibroblasts. Interestingly, no significant difference in the mean iron concentration was found in the cytoplasm of FRDA fibroblasts, but a significant decrease in zinc concentration. This finding might underscore metal dysregulation, beyond iron, in cells derived from FRDA patients. In conclusion, although currently having slightly increased limits of detection (LODs) compared to non-cryogenic mode, SR based nanoscopic XRF under cryogenic sample conditions largely obliterates the debate on chemical sample preservation and provides a unique tool for trace level elemental imaging in single cells close to their native state with a superior spatial resolution of 20 nm.


Assuntos
Ataxia de Friedreich/metabolismo , Espectrometria por Raios X/métodos , Criopreservação , Fibroblastos/metabolismo , Ataxia de Friedreich/patologia , Humanos , Limite de Detecção , Nanotecnologia , Padrões de Referência
18.
Plant Physiol ; 176(1): 611-633, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29158331

RESUMO

Lignocellulosic biomass is recalcitrant toward deconstruction into simple sugars due to the presence of lignin. To render lignocellulosic biomass a suitable feedstock for the bio-based economy, plants can be engineered to have decreased amounts of lignin. However, engineered plants with the lowest amounts of lignin exhibit collapsed vessels and yield penalties. Previous efforts were not able to fully overcome this phenotype without settling in sugar yield upon saccharification. Here, we reintroduced CINNAMOYL-COENZYME A REDUCTASE1 (CCR1) expression specifically in the protoxylem and metaxylem vessel cells of Arabidopsis (Arabidopsis thaliana) ccr1 mutants. The resulting ccr1 ProSNBE:CCR1 lines had overcome the vascular collapse and had a total stem biomass yield that was increased up to 59% as compared with the wild type. Raman analysis showed that monolignols synthesized in the vessels also contribute to the lignification of neighboring xylary fibers. The cell wall composition and metabolome of ccr1 ProSNBE:CCR1 still exhibited many similarities to those of ccr1 mutants, regardless of their yield increase. In contrast to a recent report, the yield penalty of ccr1 mutants was not caused by ferulic acid accumulation but was (largely) the consequence of collapsed vessels. Finally, ccr1 ProSNBE:CCR1 plants had a 4-fold increase in total sugar yield when compared with wild-type plants.


Assuntos
Aldeído Oxirredutases/genética , Arabidopsis/enzimologia , Arabidopsis/fisiologia , Biomassa , Mutação/genética , Xilema/fisiologia , Aldeído Oxirredutases/metabolismo , Arabidopsis/citologia , Arabidopsis/ultraestrutura , Metabolismo dos Carboidratos , Proliferação de Células/efeitos dos fármacos , Parede Celular/metabolismo , Parede Celular/ultraestrutura , Ácidos Cumáricos/farmacologia , Lignina/metabolismo , Metabolômica , Especificidade de Órgãos , Fenótipo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Caules de Planta/metabolismo , Plantas Geneticamente Modificadas , Ploidias , Plântula/efeitos dos fármacos , Plântula/metabolismo , Xilema/ultraestrutura
19.
Plant Cell ; 29(5): 1137-1156, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28420746

RESUMO

In addition to the nucleus, mitochondria and chloroplasts in plant cells also contain genomes. Efficient DNA repair pathways are crucial in these organelles to fix damage resulting from endogenous and exogenous factors. Plant organellar genomes are complex compared with their animal counterparts, and although several plant-specific mediators of organelle DNA repair have been reported, many regulators remain to be identified. Here, we show that a mitochondrial SWI/SNF (nucleosome remodeling) complex B protein, SWIB5, is capable of associating with mitochondrial DNA (mtDNA) in Arabidopsis thaliana Gain- and loss-of-function mutants provided evidence for a role of SWIB5 in influencing mtDNA architecture and homologous recombination at specific intermediate-sized repeats both under normal and genotoxic conditions. SWIB5 interacts with other mitochondrial SWIB proteins. Gene expression and mutant phenotypic analysis of SWIB5 and SWIB family members suggests a link between organellar genome maintenance and cell proliferation. Taken together, our work presents a protein family that influences mtDNA architecture and homologous recombination in plants and suggests a link between organelle functioning and plant development.


Assuntos
Arabidopsis/metabolismo , DNA Mitocondrial/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , DNA Mitocondrial/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Mitocôndrias/genética , Proteínas Mitocondriais/genética
20.
Anal Chem ; 89(7): 4161-4168, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28256828

RESUMO

In this work, the three-dimensional elemental distribution profile within the freshwater crustacean Ceriodaphnia dubia was constructed at a spatial resolution down to 5 µm via a data fusion approach employing state-of-the-art laser ablation-inductively coupled plasma-time-of-flight mass spectrometry (LA-ICP-TOFMS) and laboratory-based absorption microcomputed tomography (µ-CT). C. dubia was exposed to elevated Cu, Ni, and Zn concentrations, chemically fixed, dehydrated, stained, and embedded, prior to µ-CT analysis. Subsequently, the sample was cut into 5 µm thin sections that were subjected to LA-ICP-TOFMS imaging. Multimodal image registration was performed to spatially align the 2D LA-ICP-TOFMS images relative to the corresponding slices of the 3D µ-CT reconstruction. Mass channels corresponding to the isotopes of a single element were merged to improve the signal-to-noise ratios within the elemental images. In order to aid the visual interpretation of the data, LA-ICP-TOFMS data were projected onto the µ-CT voxels representing tissue. Additionally, the image resolution and elemental sensitivity were compared to those obtained with synchrotron radiation based 3D confocal µ-X-ray fluorescence imaging upon a chemically fixed and air-dried C. dubia specimen.


Assuntos
Imageamento Tridimensional , Imagem Multimodal , Animais , Cladocera , Cobre/análise , Terapia a Laser , Espectrometria de Massas , Níquel/análise , Distribuição Tecidual , Microtomografia por Raio-X , Zinco/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...