Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 17825, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33082390

RESUMO

Marine macroalgal forests are highly productive and iconic ecosystems, which are seriously threatened by number of factors such as habitat destruction, overgrazing, ocean warming, and pollution. The effect of chronic, but low levels of pollutants on the long-term survival of the canopy-forming algae is not well understood. Here we test the effects of low concentrations (found in good quality water-bodies) of nitrates, heavy metals copper (Cu) and lead (Pb), and herbicides (glyphosate) on both adults and recruits of Carpodesmia crinita, a Mediterranean canopy forming macroalga. We show that although adult biomass, height and photosynthetic yield remain almost unaffected in all the assays, low Cu levels of 30 µg/L completely suppress adult fertility. In addition, all the assays have a strong and negative impact on the survival and growth of recruits; in particular, glyphosate concentrations above 1 µg/L almost totally inhibit their survival. These results suggest that the long-term viability of C. crinita may be severely compromised by low pollutant levels that are not affecting adult specimens. Our results provide important data for a better understanding of the present-day threats to marine canopy-forming macroalgae and for the design of future management actions aimed at preserving macroalgal forests.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Poluentes Ambientais/toxicidade , Biologia Marinha , Alga Marinha/efeitos dos fármacos , Biomassa , Fotossíntese , Alga Marinha/fisiologia
2.
Ecol Evol ; 9(7): 4168-4180, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31015996

RESUMO

Climate change threatens coastal benthic communities on a global scale. However, the potential effects of ongoing warming on mesophotic temperate reefs at the community level remain poorly understood. Investigating how different members of these communities will respond to the future expected environmental conditions is, therefore, key to anticipating their future trajectories and developing specific management and conservation strategies. Here, we examined the responses of some of the main components of the highly diverse Mediterranean coralligenous assemblages to thermal stress. We performed thermotolerance experiments with different temperature treatments (from 26 to 29°C) with 10 species from different phyla (three anthozoans, six sponges and one ascidian) and different structural roles. Overall, we observed species-specific contrasting responses to warming regardless of phyla or growth form. Moreover, the responses ranged from highly resistant species to sensitive species and were mostly in agreement with previous field observations from mass mortality events (MMEs) linked to Mediterranean marine heat waves. Our results unravel the diversity of responses to warming in coralligenous outcrops and suggest the presence of potential winners and losers in the face of climate change. Finally, this study highlights the importance of accounting for species-specific vulnerabilities and response diversity when forecasting the future trajectories of temperate benthic communities in a warming ocean.

3.
PeerJ ; 6: e5458, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30123723

RESUMO

Despite their abundance in benthic ecosystems, life cycles and reproductive features of most sponge species remain unknown. We have studied the main reproductive features of two demosponges, Dysidea avara and Phorbas tenacior, belonging to phylogenetically distant groups: Orders Dictyoceratida and Poecilosclerida, respectively. Both sponges are abundant and share habitat in the Mediterranean rocky sublittoral. They brood parenchymella larvae with different morphology and behaviour. Sampling was conducted monthly over a two-year period in a locality where both species coexist. The two species reproduced in spring-summer, and presented species-specific reproductive features despite being subject to the same environmental conditions. D. avara has a shorter reproductive period than P. tenacior, ending before the peak of temperature in summer, while the reproductive period of P. tenacior lasts until beginning of autumn. Brooding larvae were present in June-July in D. avara, and in August-October in P. tenacior. Larval size, reproductive effort and number of larvae produced (measured the month with the maximum production) were significantly higher in D. avara than in P. tenacior. A higher reproductive effort and larval traits point to a more opportunistic life strategy in D. avara than in P. tenacior. A lack of overlap in the timing of larval release, as well as different reproductive traits, may reduce competition and facilitate the coexistence of these two sympatric and abundant sponges.

4.
Environ Microbiol ; 17(10): 3807-21, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25732544

RESUMO

Marine sponges host diverse communities of microorganisms that are often vertically transmitted from mother to oocyte or embryo. Horizontal transmission has often been proposed to co-occur in marine sponges, but the mechanism is poorly understood. To assess the impact of the mode of transmission on the microbial assemblages of sponges, we analysed the microbiota in sympatric sponges that have previously been reported to acquire bacteria via either vertical (Corticium candelabrum and Crambe crambe) or horizontal transmission (Petrosia ficiformis). The comparative study was performed by polymerase chain reaction-denaturing gradient gel electrophoresis and pyrosequencing of barcoded PCR-amplified 16S rRNA gene fragments. We found that P. ficiformis and C. candelabrum each harbour their own species-specific bacteria, but they are similar to other high-microbial-abundance sponges, while the low-microbial-abundance sponge C. crambe hosts microbiota of a very different phylogenetic signature. In addition, nearly 50% of the reads obtained from P. ficiformis were most closely related to bacteria that were previously reported to be vertically transmitted in other sponges and comprised vertical-horizontal transmission phylogenetic clusters (VHT clusters). Therefore, our results provide evidence for the hypothesis that similar sponge-associated bacteria can be acquired via both vertical and horizontal transmission.


Assuntos
Bactérias/crescimento & desenvolvimento , Microbiota/genética , Poríferos/microbiologia , Animais , Bactérias/genética , DNA Bacteriano/genética , Eletroforese em Gel de Gradiente Desnaturante , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Especificidade da Espécie
5.
Mar Drugs ; 11(2): 489-503, 2013 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-23429282

RESUMO

Several studies report temporal, geographical, and intra-individual variation in sponge metabolite yields. However, the internal and/or external factors that regulate the metabolite production remain poorly understood. Dysidea avara is a demosponge that produces sesquiterpenoids (avarol and derivatives) with interesting medical properties, which has prompted addressed studies to obtain enough amounts of these metabolites for research on drug discovery. Within this framework, specimens of Dysidea avara from a population of the Northwest Mediterranean were sampled and their secondary metabolites quantified to assess their variability and the possible relationship with external (seasonality, interactions with neighbors) and internal (reproductive stages) factors. The results show a variation of the amount of both avarol and its monoacetate derivative with time, with no clear relationship with seawater temperature. A trade-off with sponge reproduction was not found either. However, our results showed for the first time that sponges are able to increase production or accumulation of secondary metabolites in their peripheral zone depending on the nature of their neighbors. This finding could explain part of the high variability in the amount of secondary metabolites usually found in chemical ecology studies on sponges and opens new biotechnological approaches to enhance the metabolite yield in sponge cultures.


Assuntos
Poríferos/metabolismo , Animais , Ecossistema , Estrutura Molecular , Sesquiterpenos/química , Sesquiterpenos/metabolismo , Temperatura , Fatores de Tempo , Talassemia beta
6.
Mar Drugs ; 8(6): 1731-42, 2010 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-20631865

RESUMO

Marine sponges produce secondary metabolites that can be used as a natural source for the design of new drugs and cosmetics. There is, however, a supply problem with these natural substances for research and eventual commercialisation of the products. In situ sponge aquaculture is nowadays one of the most reliable methods to supply pharmaceutical companies with sufficient quantities of the target compound. In this study, we focus on the aquaculture of the sponge Dysidea avara (Schmidt, 1862), which produces avarol, a sterol with interesting pharmaceutical attributes. The soft consistency of this species makes the traditional culture method based on holding explants on ropes unsuitable. We have tested alternative culture methods for D. avara and optimized the underwater structures to hold the sponges to be used in aquaculture. Explants of this sponge were mounted on horizontal ropes, inside small cages or glued to substrates. Culture efficiency was evaluated by determination of sponge survival, growth rates, and bioactivity (as an indication of production of the target metabolite). While the cage method was the best method for explant survival, the glue method was the best one for explant growth and the rope method for bioactivity.


Assuntos
Aquicultura/métodos , Dysidea/crescimento & desenvolvimento , Animais , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Antivirais/metabolismo , Antivirais/farmacologia , Dysidea/metabolismo , Mar Mediterrâneo , Photobacterium/efeitos dos fármacos , Sesquiterpenos/metabolismo , Sesquiterpenos/farmacologia , Espanha , Análise de Sobrevida , Extratos de Tecidos/metabolismo , Extratos de Tecidos/farmacologia
7.
Mar Biotechnol (NY) ; 10(5): 622-30, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18461393

RESUMO

The aim of our research is to design tank systems to culture Dysidea avara for the production of avarol. Flow information was needed to design culture tanks suitable for effective production. Water flow regimes were characterized over a 1-year period for a shallow rocky sublittoral environment in the Northwestern Mediterranean where D. avara sponges are particularly abundant. Three-dimensional Doppler current velocities at 8-10-m depths ranged from 5 to 15 cm/s over most seasons, occasionally spiking to 30-66 cm/s. A thermistor flow sensor was used to map flow fields in close proximity ( approximately 2 cm) to individual sponges at 4.5-, 8.8-, and 14.3-m depths. These "proximal flows" averaged 1.6 cm/s in calm seas and 5.9 cm/s during a storm, when the highest proximal flow (32.9 cm/s) was recorded next to a sponge at the shallowest station. Proximal flows diminished exponentially with depth, averaging 2.6 cm/s +/- 0.15 SE over the entire study. Flow visualization studies showed that oscillatory flow (0.20-0.33 Hz) was the most common regime around individual sponges. Sponges at the 4.5-m site maintained a compact morphology with large oscula year-around despite only seasonally high flows. Sponges at 8.8 m were more erect with large oscula on tall protuberances. At the lowest-flow 14.3-m site, sponges were more branched and heavily conulated, with small oscula. The relationship between sponge morphology and ambient flow regime is discussed.


Assuntos
Aquicultura/métodos , Dysidea/crescimento & desenvolvimento , Meio Ambiente , Movimentos da Água , Animais , Oceano Atlântico , Dysidea/anatomia & histologia , Água do Mar/análise , Espanha , Tempo (Meteorologia)
8.
Trends Biotechnol ; 25(10): 467-71, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17825445

RESUMO

Sponges are a source of compounds with potential pharmaceutical applications. In this article, methods of sponge cell culture for production of these bioactive compounds are reviewed, and new approaches for overcoming the problem of metabolite supply are examined. The use of embryos is proposed as a new source of sponge material for cell culture. Stem cells are present in high amounts in embryos and are more versatile and resistant to infections than adult cells. Additionally, genetic engineering and cellular research on apoptotic mechanisms are promising new fields that might help to improve cell survival in sponge-cell lines. We propose that one topic for future research should be how to reduce apoptosis, which appears to be very high in sponge cell cultures.


Assuntos
Técnicas de Cultura de Células/métodos , Linhagem Celular/citologia , Linhagem Celular/fisiologia , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/fisiologia , Poríferos/citologia , Poríferos/fisiologia , Animais , Apoptose/fisiologia , Técnicas de Cultura de Células/tendências , Diferenciação Celular , Proliferação de Células , Sobrevivência Celular
9.
Mar Biotechnol (NY) ; 9(5): 592-605, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17624577

RESUMO

The aim of this study was to culture sponge juveniles from larvae. Starting from larvae we expected to enhance the survival and growth, and to decrease the variation in these parameters during the sponge cultures. First, settlement success, morphological changes during metamorphosis, and survival of Dysidea avara, Ircinia oros, Hippospongia communis, under the same culture conditions, were compared. In a second step, we tested the effects of flow and food on survival and growth of juveniles from Dysidea avara and Crambe crambe. Finally, in a third experiment, we monitored survival and growth of juveniles of D. avara and C. crambe transplanted to the sea to compare laboratory and field results. The results altogether indicated that sponge culture from larvae is a promising method for sponge supply and that laboratory culture under controlled conditions is preferred over sea cultures in order to prevent biomass losses during these early life stages.


Assuntos
Técnicas de Cultura/veterinária , Poríferos/crescimento & desenvolvimento , Animais , Técnicas de Cultura/métodos , Larva/citologia , Larva/crescimento & desenvolvimento , Larva/fisiologia , Poríferos/fisiologia , Água do Mar , Especificidade da Espécie , Análise de Sobrevida , Fatores de Tempo
10.
Biomol Eng ; 20(4-6): 339-47, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12919818

RESUMO

Sponges are an important source of secondary metabolites with pharmaceutical interest. This is the main reason for the increasing interest of sponge culture recent years. The optimal culture system depends on the species to be cultured: while some species easily produce sponge aggregates after dissociation (primmorphs), others show a great capacity to regenerate after fragmentation (explants). Corticium candelabrum is a Mediterranean bacteriosponge that can undergo asexual reproduction. We have taken advantage of this capability and cultured C. candelabrum explants under several experimental conditions. To find the best conditions for obtaining functional explants, we assayed a range of conditions, including seasons of collection, culture temperature, filtered versus filtered-sterile seawater, addition of antibiotics and proportion of ectosome. We monitored the changes in shape and ultrastructure during the formation of explants. After 24 h, TEM images showed the aquiferous system disarranged, in particular at the sponge periphery. From 2 to 4 weeks later, the aquiferous system regenerated, and fragments became functional sponges (explants). Explants were cultured under two regimes: in vitro and in a closed aquarium system. Antibiotics were only added to the in vitro culture to assess their effect on the symbiotic bacteria, which remained healthy despite the presence of antibiotics. Two food regimens (marine bacteria and green algae) were assayed for their ability to satisfy the metabolic requirements of explants. We monitored explant survival and growth. Explants showed a high long-term survival rate (close to 100%). Growth rates were higher in the closed aquarium system, without antibiotic addition, and fed with algae. Explants cultures were hardly contaminated because manipulation was reduced to a minimum and we used sterilized seawater. C. candelabrum produces bioactive molecules, which may play a defensive role in the sponge and may have pharmaceutical interest. The bioactivity of the explants was similar to that of wild sponges.


Assuntos
Reatores Biológicos , Técnicas de Cultura/métodos , Poríferos/crescimento & desenvolvimento , Poríferos/ultraestrutura , Animais , Antibacterianos/farmacologia , Divisão Celular , Tamanho Celular , Sobrevivência Celular , Poríferos/efeitos dos fármacos , Poríferos/microbiologia , Análise de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...