Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36617138

RESUMO

Time-of-flight cameras are widely adopted in a variety of indoor applications ranging from industrial object measurement to human activity recognition. However, the available products may differ in terms of the quality of the acquired point cloud, and the datasheet provided by the constructors may not be enough to guide researchers in the choice of the perfect device for their application. Hence, this work details the experimental procedure to assess time-of-flight cameras' error sources that should be considered when designing an application involving time-of-flight technology, such as the bias correction and the temperature influence on the point cloud stability. This is the first step towards a standardization of the metrological characterization procedure that could ensure the robustness and comparability of the results among tests and different devices. The procedure was conducted on Kinect Azure, Basler Blaze 101, and Basler ToF 640 cameras. Moreover, we compared the devices in the task of 3D reconstruction following a procedure involving the measure of both an object and a human upper-body-shaped mannequin. The experiment highlighted that, despite the results of the previously conducted metrological characterization, some devices showed evident difficulties in reconstructing the target objects. Thus, we proved that performing a rigorous evaluation procedure similar to the one proposed in this paper is always necessary when choosing the right device.


Assuntos
Corpo Humano , Humanos
2.
Assist Technol ; 35(2): 180-192, 2023 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-34871532

RESUMO

This paper aims to evaluate and compare the driving performances achieved with a power wheelchair using a standard joystick versus a novel gaze-based technology. The gaze-based interface, called RoboEYE, involves a novel paradigm of computer interaction that handles the receipt of information from an eye tracker, using it as a continuous input for wheelchair navigation. A pool of 36 subjects has tested both technologies in a circuit designed considering the Wheelchair Skill Test. The experimental analysis involved evaluations of specific metrics of motion and the submission of questionnaires to collect required information about perceived feelings and mental workload. The joystick proved to be the best driving interface. It turned out to be more accurate and efficient than the gaze-based solution. However, the latter achieved only small differences in driving kinematics. These differences can be considered negligible from an operational point of view, offering a driving experience similar to that achievable with the joystick. Testers reported no particular stress, fatigue, or frustration when switching from one interface to another. These elements suggest that the proposed gaze-based solution is an appropriate alternative for a technology transition driven by a pathological change in the user's condition.


Assuntos
Interface Usuário-Computador , Cadeiras de Rodas , Humanos , Fenômenos Biomecânicos
3.
Artigo em Inglês | MEDLINE | ID: mdl-32195243

RESUMO

The design of markerless systems to reconstruct human motion in a timely, unobtrusive and externally valid manner is still an open challenge. Artificial intelligence algorithms based on automatic landmarks identification on video images opened to a new approach, potentially e-viable with low-cost hardware. OpenPose is a library that t using a two-branch convolutional neural network allows for the recognition of skeletons in the scene. Although OpenPose-based solutions are spreading, their metrological performances relative to video setup are still largely unexplored. This paper aimed at validating a two-cameras OpenPose-based markerless system for gait analysis, considering its accuracy relative to three factors: cameras' relative distance, gait direction and video resolution. Two volunteers performed a walking test within a gait analysis laboratory. A marker-based optical motion capture system was taken as a reference. Procedures involved: calibration of the stereoscopic system; acquisition of video recordings, simultaneously with the reference marker-based system; video processing within OpenPose to extract the subject's skeleton; videos synchronization; triangulation of the skeletons in the two videos to obtain the 3D coordinates of the joints. Two set of parameters were considered for the accuracy assessment: errors in trajectory reconstruction and error in selected gait space-temporal parameters (step length, swing and stance time). The lowest error in trajectories (~20 mm) was obtained with cameras 1.8 m apart, highest resolution and straight gait, and the highest (~60 mm) with the 1.0 m, low resolution and diagonal gait configuration. The OpenPose-based system tended to underestimate step length of about 1.5 cm, while no systematic biases were found for swing/stance time. Step length significantly changed according to gait direction (p = 0.008), camera distance (p = 0.020), and resolution (p < 0.001). Among stance and swing times, the lowest errors (0.02 and 0.05 s for stance and swing, respectively) were obtained with the 1 m, highest resolution and straight gait configuration. These findings confirm the feasibility of tracking kinematics and gait parameters of a single subject in a 3D space using two low-cost webcams and the OpenPose engine. In particular, the maximization of cameras distance and video resolution enabled to achieve the highest metrological performances.

4.
Neurobiol Dis ; 127: 253-263, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30849510

RESUMO

Beta power suppression in the basal ganglia is stronger during movements that require high force levels and high movement effort but it has been difficult to dissociate the two. We recorded scalp EEG and basal ganglia local field potentials in Parkinson's disease patients (11 STN, 7 GPi) ON and OFF dopaminergic medication while they performed a visually-guided force matching task using a pen on a force-sensitive graphics tablet. Force adjustments were accompanied by beta power suppression irrespective of whether the force was increased or reduced. Before the adjustment was completed, beta activity returned. High beta power was specifically associated with slowing of the force adjustment. ON medication, the peak force rate was faster and cortico-basal ganglia beta phase coupling was more readily modulated. In particular, phase decoupling was stronger during faster adjustments. The results suggest that beta power in the basal ganglia does not covary with force per se, but rather with a related factor, the absolute force rate, or a more general concept of movement effort. The results also highlight that beta activity reappears during stabilization of isometric contractions, and that dopamine-related suppression of cortico-basal ganglia beta coupling is linked to faster force adjustments.


Assuntos
Gânglios da Base/fisiopatologia , Ritmo beta/fisiologia , Córtex Cerebral/fisiopatologia , Levodopa/uso terapêutico , Rede Nervosa/fisiopatologia , Doença de Parkinson/fisiopatologia , Potenciais de Ação/fisiologia , Idoso , Antiparkinsonianos/uso terapêutico , Estimulação Encefálica Profunda , Eletroencefalografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/terapia , Desempenho Psicomotor/fisiologia
5.
Sensors (Basel) ; 19(4)2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30791532

RESUMO

The paper proposes an improved method for calculating the position of a movable tag whose distance to a (redundant) set of fixed beacons is measured by some suitable physical principle (typically ultra wide band or ultrasound propagation). The method is based on the multilateration technique, where the contribution of each individual beacon is weighed on the basis of a recurring, self-supported calibration of the measurement repeatability of each beacon at a given distance range. The work outlines the method and its implementation, and shows the improvement in measurement quality with respect to the results of a commercial Ultra-Wide-Band (UWB) system when tested on the same set of raw beacon-to-tag distances. Two versions of the algorithm are proposed: one-dimensional, or isotropic, and 3D. With respect to the standard approach, the isotropic solution managed to reduce the maximum localization error by around 25%, with a maximum error of 0.60 m, while the 3D version manages to improve even further the localization accuracy, with a maximum error of 0.45 m.

6.
Entropy (Basel) ; 21(3)2019 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-33266990

RESUMO

In this study, an analysis of brain, cardiovascular and respiratory dynamics was conducted combining information-theoretic measures with the Network Physiology paradigm during different levels of mental stress. Starting from low invasive recordings of electroencephalographic, electrocardiographic, respiratory, and blood volume pulse signals, the dynamical activity of seven physiological systems was probed with one-second time resolution measuring the time series of the δ , θ , α and ß brain wave amplitudes, the cardiac period (RR interval), the respiratory amplitude, and the duration of blood pressure wave propagation (pulse arrival time, PAT). Synchronous 5-min windows of these time series, obtained from 18 subjects during resting wakefulness (REST), mental stress induced by mental arithmetic (MA) and sustained attention induced by serious game (SG), were taken to describe the dynamics of the nodes composing the observed physiological network. Network activity and connectivity were then assessed in the framework of information dynamics computing the new information generated by each node, the information dynamically stored in it, and the information transferred to it from the other network nodes. Moreover, the network topology was investigated using directed measures of conditional information transfer and assessing their statistical significance. We found that all network nodes dynamically produce and store significant amounts of information, with the new information being prevalent in the brain systems and the information storage being prevalent in the peripheral systems. The transition from REST to MA was associated with an increase of the new information produced by the respiratory signal time series (RESP), and that from MA to SG with a decrease of the new information produced by PAT. Each network node received a significant amount of information from the other nodes, with the highest amount transferred to RR and the lowest transferred to δ , θ , α and ß . The topology of the physiological network underlying such information transfer was node- and state-dependent, with the peripheral subnetwork showing interactions from RR to PAT and between RESP and RR, PAT consistently across states, the brain subnetwork resulting more connected during MA, and the subnetwork of brain-peripheral interactions involving different brain rhythms in the three states and resulting primarily activated during MA. These results have both physiological relevance as regards the interpretation of central and autonomic effects on cardiovascular and respiratory variability, and practical relevance as regards the identification of features useful for the automatic distinction of different mental states.

7.
Nature ; 526(7573): 402-5, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26416730

RESUMO

The factors shaping cometary nuclei are still largely unknown, but could be the result of concurrent effects of evolutionary and primordial processes. The peculiar bilobed shape of comet 67P/Churyumov-Gerasimenko may be the result of the fusion of two objects that were once separate or the result of a localized excavation by outgassing at the interface between the two lobes. Here we report that the comet's major lobe is enveloped by a nearly continuous set of strata, up to 650 metres thick, which are independent of an analogous stratified envelope on the minor lobe. Gravity vectors computed for the two lobes separately are closer to perpendicular to the strata than those calculated for the entire nucleus and adjacent to the neck separating the two lobes. Therefore comet 67P/Churyumov-Gerasimenko is an accreted body of two distinct objects with 'onion-like' stratification, which formed before they merged. We conclude that gentle, low-velocity collisions occurred between two fully formed kilometre-sized cometesimals in the early stages of the Solar System. The notable structural similarities between the two lobes of comet 67P/Churyumov-Gerasimenko indicate that the early-forming cometesimals experienced similar primordial stratified accretion, even though they formed independently.

8.
Nature ; 523(7558): 63-6, 2015 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-26135448

RESUMO

Pits have been observed on many cometary nuclei mapped by spacecraft. It has been argued that cometary pits are a signature of endogenic activity, rather than impact craters such as those on planetary and asteroid surfaces. Impact experiments and models cannot reproduce the shapes of most of the observed cometary pits, and the predicted collision rates imply that few of the pits are related to impacts. Alternative mechanisms like explosive activity have been suggested, but the driving process remains unknown. Here we report that pits on comet 67P/Churyumov-Gerasimenko are active, and probably created by a sinkhole process, possibly accompanied by outbursts. We argue that after formation, pits expand slowly in diameter, owing to sublimation-driven retreat of the walls. Therefore, pits characterize how eroded the surface is: a fresh cometary surface will have a ragged structure with many pits, while an evolved surface will look smoother. The size and spatial distribution of pits imply that large heterogeneities exist in the physical, structural or compositional properties of the first few hundred metres below the current nucleus surface.

9.
Science ; 347(6220): aaa0440, 2015 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-25613893

RESUMO

Images of comet 67P/Churyumov-Gerasimenko acquired by the OSIRIS (Optical, Spectroscopic and Infrared Remote Imaging System) imaging system onboard the European Space Agency's Rosetta spacecraft at scales of better than 0.8 meter per pixel show a wide variety of different structures and textures. The data show the importance of airfall, surface dust transport, mass wasting, and insolation weathering for cometary surface evolution, and they offer some support for subsurface fluidization models and mass loss through the ejection of large chunks of material.

10.
Science ; 347(6220): aaa1044, 2015 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-25613897

RESUMO

Images from the OSIRIS scientific imaging system onboard Rosetta show that the nucleus of 67P/Churyumov-Gerasimenko consists of two lobes connected by a short neck. The nucleus has a bulk density less than half that of water. Activity at a distance from the Sun of >3 astronomical units is predominantly from the neck, where jets have been seen consistently. The nucleus rotates about the principal axis of momentum. The surface morphology suggests that the removal of larger volumes of material, possibly via explosive release of subsurface pressure or via creation of overhangs by sublimation, may be a major mass loss process. The shape raises the question of whether the two lobes represent a contact binary formed 4.5 billion years ago, or a single body where a gap has evolved via mass loss.

11.
Science ; 347(6220): aaa3905, 2015 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-25613898

RESUMO

Critical measurements for understanding accretion and the dust/gas ratio in the solar nebula, where planets were forming 4.5 billion years ago, are being obtained by the GIADA (Grain Impact Analyser and Dust Accumulator) experiment on the European Space Agency's Rosetta spacecraft orbiting comet 67P/Churyumov-Gerasimenko. Between 3.6 and 3.4 astronomical units inbound, GIADA and OSIRIS (Optical, Spectroscopic, and Infrared Remote Imaging System) detected 35 outflowing grains of mass 10(-10) to 10(-7) kilograms, and 48 grains of mass 10(-5) to 10(-2) kilograms, respectively. Combined with gas data from the MIRO (Microwave Instrument for the Rosetta Orbiter) and ROSINA (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) instruments, we find a dust/gas mass ratio of 4 ± 2 averaged over the sunlit nucleus surface. A cloud of larger grains also encircles the nucleus in bound orbits from the previous perihelion. The largest orbiting clumps are meter-sized, confirming the dust/gas ratio of 3 inferred at perihelion from models of dust comae and trails.

12.
Stud Health Technol Inform ; 189: 158-63, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23739376

RESUMO

In this work, we present the results of collaboration between an engineering department and a rehabilitation hospital in using innovative touch interfaces properly designed for both neurocognitive and physical rehabilitation. The novel touch interface also measures force, thereby enabling dexterity training through 'direct' manipulation of virtual objects in 3D. Two dimensions are recorded via touch screen, the third by the force channel. We believe that this tool could increase the degree of effectiveness of traditional rehabilitation treatments thanks to its capability to merge physical and cognitive rehabilitation. Furthermore, the exergames implemented allow an easy personalization of the exercise structure and difficulty level. The effectiveness of the FP technology compared with more traditional methods of rehabilitation is measured according to specific parameters observed in an experimental group in comparison with a control group.


Assuntos
Biorretroalimentação Psicológica/instrumentação , Transtornos Cognitivos/reabilitação , Terapia por Exercício/instrumentação , Transtornos dos Movimentos/reabilitação , Terapia Assistida por Computador/instrumentação , Tato , Interface Usuário-Computador , Biorretroalimentação Psicológica/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Terapia por Exercício/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Terapia Assistida por Computador/métodos , Resultado do Tratamento
13.
Stud Health Technol Inform ; 177: 139-44, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22942045

RESUMO

Computerized interfaces are able to represent 3D immersive simulations. Most of them make use of joystick, mouse, gloves, or grasp pressure transducers. Those have the drawback of 'filtering' the user interaction and/or de-locate the touch with respect to the visual stimulus. To overcome this we developed dexterity rehabilitation games on a novel touch interface that measures also force. The system allows dexterity training through 'direct' manipulation of virtual objects in 3D. Two dimensions via the touch screen, the third by the force channel. Tactile feedback is provided with a vibration device mounted on the screen back.


Assuntos
Terapia por Exercício/métodos , Jogos Experimentais , Transtornos dos Movimentos/reabilitação , Software , Terapia Assistida por Computador/métodos , Interface Usuário-Computador , Jogos de Vídeo , Humanos , Transtornos dos Movimentos/prevenção & controle , Tato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...