Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Discov ; 13(7): 1592-1615, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37011011

RESUMO

Pediatric high-grade gliomas (pHGG) are lethal, incurable brain tumors frequently driven by clonal mutations in histone genes. They often harbor a range of additional genetic alterations that correlate with different ages, anatomic locations, and tumor subtypes. We developed models representing 16 pHGG subtypes driven by different combinations of alterations targeted to specific brain regions. Tumors developed with varying latencies and cell lines derived from these models engrafted in syngeneic, immunocompetent mice with high penetrance. Targeted drug screening revealed unexpected selective vulnerabilities-H3.3G34R/PDGFRAC235Y to FGFR inhibition, H3.3K27M/PDGFRAWT to PDGFRA inhibition, and H3.3K27M/PDGFRAWT and H3.3K27M/PPM1DΔC/PIK3CAE545K to combined inhibition of MEK and PIK3CA. Moreover, H3.3K27M tumors with PIK3CA, NF1, and FGFR1 mutations were more invasive and harbored distinct additional phenotypes, such as exophytic spread, cranial nerve invasion, and spinal dissemination. Collectively, these models reveal that different partner alterations produce distinct effects on pHGG cellular composition, latency, invasiveness, and treatment sensitivity. SIGNIFICANCE: Histone-mutant pediatric gliomas are a highly heterogeneous tumor entity. Different histone mutations correlate with different ages of onset, survival outcomes, brain regions, and partner alterations. We have developed models of histone-mutant gliomas that reflect this anatomic and genetic heterogeneity and provide evidence of subtype-specific biology and therapeutic targeting. See related commentary by Lubanszky and Hawkins, p. 1516. This article is highlighted in the In This Issue feature, p. 1501.


Assuntos
Neoplasias Encefálicas , Glioma , Animais , Camundongos , Histonas/metabolismo , Regulação Neoplásica da Expressão Gênica , Glioma/tratamento farmacológico , Glioma/genética , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Encéfalo/patologia , Mutação
2.
Cell Death Dis ; 9(8): 821, 2018 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-30050081

RESUMO

Mir-205 plays an important role in epithelial biogenesis and in mammary gland development but its role in cancer still remains controversial depending on the specific cellular context and target genes. We have previously reported that miR-205-5p is upregulated in breast cancer stem cells targeting ERBB pathway and leading to targeted therapy resistance. Here we show that miR-205-5p regulates tumorigenic properties of breast cancer cells, as well as epithelial to mesenchymal transition. Silencing this miRNA in breast cancer results in reduced tumor growth and metastatic spreading in mouse models. Moreover, we show that miR-205-5p knock-down can be obtained with the use of specific locked nucleic acids oligonucleotides in vivo suggesting a future potential use of this approach in therapy.


Assuntos
MicroRNAs/metabolismo , Oligonucleotídeos/metabolismo , Animais , Antagomirs/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal , Feminino , Humanos , Camundongos , Camundongos Endogâmicos NOD , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Metástase Neoplásica , Transplante Heterólogo
4.
J Cell Physiol ; 233(5): 4091-4105, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28941284

RESUMO

Targeted anticancer therapies demand discovery of new cellular targets to be exploited for the delivery of toxic molecules and drugs. In this perspective, in the last few years, nucleolin has been identified as an interesting surface marker to be used for the therapy of glioblastoma. In this study, we investigated whether a synthetic antagonist of cell-surface nucleolin known as N6L, previously reported to decrease both tumor growth and tumor angiogenesis in several cancer cell lines, including glioblastoma cells, as well as endothelial cells proliferation, could be exploited to deliver a protein toxin (saporin) to glioblastoma cells. The pseudopeptide N6L cross-linked to saporin-S6 induced internalization of the toxin inside glioblastoma cancer cells. Our results in vitro demonstrated the effectiveness of this conjugate in inducing cell death, with an ID50 four orders of magnitude lower than that observed for free N6L. Furthermore, the preliminary in vivo study demonstrated efficiency in reducing the tumor mass in an orthotopic mouse model of glioblastoma.


Assuntos
Glioblastoma/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Peptídeos/farmacologia , Fosfoproteínas/farmacologia , Proteínas de Ligação a RNA/farmacologia , Animais , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Camundongos , Terapia de Alvo Molecular , Neovascularização Patológica/patologia , Peptídeos/química , Fosfoproteínas/química , Proteínas de Ligação a RNA/química , Saporinas/química , Saporinas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Nucleolina
5.
Colloids Surf B Biointerfaces ; 135: 575-580, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26318032

RESUMO

The analytical tools allow the detection of bioactive compounds, diagnostic agents and chemotherapeutics. Recently, new methods have been developed to analyze pharmaceutical samples and ingredients. In this attempt, analytical parameters, e.g., the lack of trueness, robustness and sensitivity, play a pivotal role to quantify and analyze molecules, both for diagnostic applications as well as therapeutic treatments. Spectrophotometers and spectrofluorometers are apparatus for easy and rapid quantification of molecular probes and chemotherapeutics into cells, plasma and tissues. However, they lack accuracy and precision. Conversely, HPLC provides the maximum resolution to detect and separate fluorescent probes and chemotherapeutics after their incubation in cells, plasma and tissues. The aim of this work was to develop an HPLC method that easily detects molecular and fluorescent probes, e.g., Nile Red, in biological samples. To improve the robustness of the method, Nile Red was analyzed before and after loading into niosomes made from Tween 20 and 21, respectively. A significant difference was further obtained by comparing the entrapment efficacy percentage of niosomes made from Tween 21 (42.23%) and Tween 20 (53.25%). The comparison between HPLC and spectrofluorometer assays showed differences between the two methods in terms of limit of detection, linearity and accuracy. The resulting data demonstrated that the HPLC-FLD provides a limit of detection for Nile Red of 0.1 ng/mL, and a good linearity up to 62.5 ng/mL. The HPLC-FLD analysis showed a limit of quantification value for a total mass of Nile Red 1200-folds better than data previously reported in studies; and 312-folds better than the spectrofluorometer analysis. Additionally, results show that the HPLC-FLD increases the sensitivity for biological samples compared to the spectrofluorometer. The Nile Red-loaded niosomes were also incubated at different times with HEK-293 cells. In vitro results demonstrated that the HPLC-FLD apparatus detects Nile Red-loaded niosomes at higher concentrations into HEK-293 cells than the spectrofluorometer. The intracellular uptake of Nile Red was increased at 120 and 24 min using niosomes made from Tween 20 and 21, respectively, and its intracellular accumulation shows a time-dependent internalization over 120 min of incubation time.


Assuntos
Cromatografia Líquida de Alta Pressão/instrumentação , Cromatografia Líquida de Alta Pressão/métodos , Corantes Fluorescentes/administração & dosagem , Corantes Fluorescentes/química , Lipossomos/química , Espectrometria de Fluorescência/instrumentação , Espectrometria de Fluorescência/métodos , Química Farmacêutica , Células HEK293 , Humanos , Oxazinas/química , Polissorbatos , Reprodutibilidade dos Testes , Tensoativos
6.
J Proteome Res ; 13(4): 2120-36, 2014 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-24597989

RESUMO

p63 is an important regulator of epithelial development expressed in different variants containing (TA) or lacking (ΔN) the N-terminal transactivation domain. The different isoforms regulate stem-cell renewal and differentiation as well as cell senescence. Several studies indicate that p63 isoforms also play a role in cancer development; however, very little is known about the role played by p63 in regulating the cancer stem phenotype. Here we investigate the cellular signals regulated by TAp63 and ΔNp63 in a model of epithelial cancer stem cells. To this end, we used colon cancer stem cells, overexpressing either TAp63 or ΔNp63 isoforms, to carry out a proteomic study by chemical-labeling approach coupled to network analysis. Our results indicate that p63 is implicated in a wide range of biological processes, including metabolism. This was further investigated by a targeted strategy at both protein and metabolite levels. The overall data show that TAp63 overexpressing cells are more glycolytic-active than ΔNp63 cells, indicating that the two isoforms may regulate the key steps of glycolysis in an opposite manner. The mass-spectrometry proteomics data of the study have been deposited to the ProteomeXchange Consortium ( http://proteomecentral.proteomexchange.org ) via the PRIDE partner repository with data set identifiers PXD000769 and PXD000768.


Assuntos
Células-Tronco Neoplásicas/metabolismo , Mapas de Interação de Proteínas/fisiologia , Isoformas de Proteínas/metabolismo , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Humanos , Marcação por Isótopo , Metabolômica , Células-Tronco Neoplásicas/fisiologia , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Isoformas de Proteínas/química , Proteoma/análise , Proteoma/metabolismo , Proteômica , Fatores de Transcrição/química , Proteínas Supressoras de Tumor/química
7.
Nucleic Acids Res ; 41(5): 3228-39, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23328624

RESUMO

Nucleophosmin (NPM1) is an abundant nucleolar protein implicated in ribosome maturation and export, centrosome duplication and response to stress stimuli. NPM1 is the most frequently mutated gene in acute myeloid leukemia. Mutations at the C-terminal domain led to variant proteins that aberrantly and stably translocate to the cytoplasm. We have previously shown that NPM1 C-terminal domain binds with high affinity G-quadruplex DNA. Here, we investigate the structural determinants of NPM1 nucleolar localization. We show that NPM1 interacts with several G-quadruplex regions found in ribosomal DNA, both in vitro and in vivo. Furthermore, the most common leukemic NPM1 variant completely loses this activity. This is the consequence of G-quadruplex-binding domain destabilization, as mutations aimed at refolding the leukemic variant also result in rescuing the G-quadruplex-binding activity and nucleolar localization. Finally, we show that treatment of cells with a G-quadruplex selective ligand results in wild-type NPM1 dislocation from nucleoli into nucleoplasm. In conclusion, this work establishes a direct correlation between NPM1 G-quadruplex binding at rDNA and its nucleolar localization, which is impaired in the acute myeloid leukemia-associated protein variants.


Assuntos
Nucléolo Celular/metabolismo , DNA Ribossômico/genética , Quadruplex G , Proteínas Nucleares/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Sequência de Bases , Ligação Competitiva , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , DNA Ribossômico/química , DNA Ribossômico/metabolismo , Humanos , Cinética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Nucleofosmina , Oligonucleotídeos/química , Porfirinas/química , Porfirinas/farmacologia , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico
8.
Cell Cycle ; 7(15): 2357-67, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18677100

RESUMO

Cajal Bodies are one of many specialised organelles contained in the eukaryotic cell nucleus, and are involved in a number of functions, including regulation of replication-dependent histone gene transcription. In normal diploid cells their number varies between 0 and 4 depending on the cell cycle phase, although in cancer cell lines their number is extremely variable and it has been suggested that it correlates with cell ploidy. Here we show that in mammalian cells, as in Drosophila, two distinct though functionally related bodies exist: a histone gene locus body and a Cajal Body. The first one can be detected using FLASH or NPAT as markers while the second is labelled using antibodies against Coilin. Only the number of FLASH/NPAT histone gene locus bodies correlates with ploidy and only these organelles appear to be regulated during the cell cycle. Finally, we show that the two organelles completely co-localize during the S phase of the cell cycle.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ciclo Celular/metabolismo , Corpos Enovelados/metabolismo , Proteínas Nucleares/metabolismo , Ploidias , Aneuploidia , Ciclo Celular/fisiologia , Células Cultivadas , Análise Citogenética , Células HCT116 , Células HeLa , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...