Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Biol Med ; 169: 107949, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199206

RESUMO

Excitable systems give rise to important phenomena such as heat waves, epidemics and cardiac arrhythmias. Understanding, forecasting and controlling such systems requires reliable mathematical representations. For cardiac tissue, computational models are commonly generated in a reaction-diffusion framework based on detailed measurements of ionic currents in dedicated single-cell experiments. Here, we show that recorded movies at the tissue-level of stochastic pacing in a single variable are sufficient to generate a mathematical model. Via exponentially weighed moving averages, we create additional state variables, and use simple polynomial regression in the augmented state space to quantify excitation wave dynamics. A spatial gradient-sensing term replaces the classical diffusion as it is more robust to noise. Our pipeline for model creation is demonstrated for an in-silico model and optical voltage mapping recordings of cultured human atrial myocytes and only takes a few minutes. Our findings have the potential for widespread generation, use and on-the-fly refinement of personalised computer models for non-linear phenomena in biology and medicine, such as predictive cardiac digital twins.


Assuntos
Arritmias Cardíacas , Medicina , Humanos , Miócitos Cardíacos/fisiologia , Modelos Cardiovasculares , Simulação por Computador
2.
Cardiovasc Res ; 120(3): 249-261, 2024 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-38048392

RESUMO

AIMS: Diseased atria are characterized by functional and structural heterogeneities, adding to abnormal impulse generation and propagation. These heterogeneities are thought to lie at the origin of fractionated electrograms recorded during sinus rhythm (SR) in atrial fibrillation (AF) patients and are assumed to be involved in the onset and perpetuation (e.g. by re-entry) of this disorder. The underlying mechanisms, however, remain incompletely understood. Here, we tested whether regions of dense fibrosis could create an electrically isolated conduction pathway (EICP) in which re-entry could be established via ectopy and local block to become 'trapped'. We also investigated whether this could generate local fractionated electrograms and whether the re-entrant wave could 'escape' and cause a global tachyarrhythmia due to dynamic changes at a connecting isthmus. METHODS AND RESULTS: To precisely control and explore the geometrical properties of EICPs, we used light-gated depolarizing ion channels and patterned illumination for creating specific non-conducting regions in silico and in vitro. Insight from these studies was used for complementary investigations in virtual human atria with localized fibrosis. We demonstrated that a re-entrant tachyarrhythmia can exist locally within an EICP with SR prevailing in the surrounding tissue and identified conditions under which re-entry could escape from the EICP, thereby converting a local latent arrhythmic source into an active driver with global impact on the heart. In a realistic three-dimensional model of human atria, unipolar epicardial pseudo-electrograms showed fractionation at the site of 'trapped re-entry' in coexistence with regular SR electrograms elsewhere in the atria. Upon escape of the re-entrant wave, acute arrhythmia onset was observed. CONCLUSIONS: Trapped re-entry as a latent source of arrhythmogenesis can explain the sudden onset of focal arrhythmias, which are able to transgress into AF. Our study might help to improve the effectiveness of ablation of aberrant cardiac electrical signals in clinical practice.


Assuntos
Fibrilação Atrial , Humanos , Átrios do Coração , Canais Iônicos , Taquicardia/patologia , Fibrose
3.
Cell Rep Methods ; 3(12): 100671, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38086387

RESUMO

To unlock new research possibilities by acquiring control of action potential (AP) morphologies in excitable cells, we developed an opto-electronic feedback loop-based system integrating cellular electrophysiology, real-time computing, and optogenetic approaches and applied it to monolayers of heart muscle cells. This allowed accurate restoration and preservation of cardiac AP morphologies in the presence of electrical perturbations of different origin in an unsupervised, self-regulatory manner, without any prior knowledge of the disturbance. Moreover, arbitrary AP waveforms could be enforced onto these cells. Collectively, these results set the stage for the refinement and application of opto-electronic control systems to enable in-depth investigation into the regulatory role of membrane potential in health and disease.


Assuntos
Miócitos Cardíacos , Potenciais da Membrana , Potenciais de Ação , Retroalimentação
4.
Circ Res ; 131(1): 24-41, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35587025

RESUMO

BACKGROUND: Heart development relies on tight spatiotemporal control of cardiac gene expression. Genes involved in this intricate process have been identified using animals and pluripotent stem cell-based models of cardio(myo)genesis. Recently, the repertoire of cardiomyocyte differentiation models has been expanded with iAM-1, a monoclonal line of conditionally immortalized neonatal rat atrial myocytes (NRAMs), which allows toggling between proliferative and differentiated (ie, excitable and contractile) phenotypes in a synchronized and homogenous manner. METHODS: In this study, the unique properties of conditionally immortalized NRAMs (iAMs) were exploited to identify and characterize (lowly expressed) genes with an as-of-yet uncharacterized role in cardiomyocyte differentiation. RESULTS: Transcriptome analysis of iAM-1 cells at different stages during one cycle of differentiation and subsequent dedifferentiation identified ≈13 000 transcripts, of which the dynamic changes in expression upon cardiomyogenic differentiation mostly opposed those during dedifferentiation. Among the genes whose expression increased during differentiation and decreased during dedifferentiation were many with known (lineage-specific) functions in cardiac muscle formation. Filtering for cardiac-enriched low-abundance transcripts, identified multiple genes with an uncharacterized role during cardio(myo)genesis including Sbk2 (SH3 domain binding kinase family member 2). Sbk2 encodes an evolutionarily conserved putative serine/threonine protein kinase, whose expression is strongly up- and downregulated during iAM-1 cell differentiation and dedifferentiation, respectively. In neonatal and adult rats, the protein is muscle-specific, highly atrium-enriched, and localized around the A-band of cardiac sarcomeres. Knockdown of Sbk2 expression caused loss of sarcomeric organization in NRAMs, iAMs and their human counterparts, consistent with a decrease in sarcomeric gene expression as evinced by transcriptome and proteome analyses. Interestingly, co-immunoprecipitation using Sbk2 as bait identified possible interaction partners with diverse cellular functions (translation, intracellular trafficking, cytoskeletal organization, chromatin modification, sarcomere formation). CONCLUSIONS: iAM-1 cells are a relevant and suitable model to identify (lowly expressed) genes with a hitherto unidentified role in cardiomyocyte differentiation as exemplified by Sbk2: a regulator of atrial sarcomerogenesis.


Assuntos
Miócitos Cardíacos , Sarcômeros , Animais , Diferenciação Celular , Átrios do Coração , Miocárdio , Miócitos Cardíacos/metabolismo , Ratos , Sarcômeros/metabolismo
5.
Ann N Y Acad Sci ; 1506(1): 98-117, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34786712

RESUMO

Synthetic biology has the potential to transform cell- and gene-based therapies for a variety of diseases. Sophisticated tools are now available for both eukaryotic and prokaryotic cells to engineer cells to selectively achieve therapeutic effects in response to one or more disease-related signals, thus sparing healthy tissue from potentially cytotoxic effects. This report summarizes the Keystone eSymposium "Synthetic Biology: At the Crossroads of Genetic Engineering and Human Therapeutics," which took place on May 3 and 4, 2021. Given that several therapies engineered using synthetic biology have entered clinical trials, there was a clear need for a synthetic biology symposium that emphasizes the therapeutic applications of synthetic biology as opposed to the technical aspects. Presenters discussed the use of synthetic biology to improve T cell, gene, and viral therapies, to engineer probiotics, and to expand upon existing modalities and functions of cell-based therapies.


Assuntos
Congressos como Assunto/tendências , Engenharia Genética/tendências , Terapia Genética/tendências , Relatório de Pesquisa , Biologia Sintética/tendências , Animais , Terapia Baseada em Transplante de Células e Tecidos/métodos , Terapia Baseada em Transplante de Células e Tecidos/tendências , Marcação de Genes/métodos , Marcação de Genes/tendências , Engenharia Genética/métodos , Terapia Genética/métodos , Humanos , Células Matadoras Naturais/imunologia , Aprendizado de Máquina/tendências , Biologia Sintética/métodos , Linfócitos T/imunologia
6.
Front Physiol ; 12: 710020, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539432

RESUMO

Aim: Channelrhodopsins (ChRs) are a large family of light-gated ion channels with distinct properties, which is of great importance in the selection of a ChR variant for a given application. However, data to guide such selection for cardiac optogenetic applications are lacking. Therefore, we investigated the functioning of different ChR variants in normal and pathological hypertrophic cardiomyocytes subjected to various illumination protocols. Methods and Results: Isolated neonatal rat ventricular cardiomyocytes (NRVMs) were transduced with lentiviral vectors to express one of the following ChR variants: H134R, CatCh, ReaChR, or GtACR1. NRVMs were treated with phenylephrine (PE) to induce pathological hypertrophy (PE group) or left untreated [control (CTL) group]. In these groups, ChR currents displayed unique and significantly different properties for each ChR variant on activation by a single 1-s light pulse (1 mW/mm2: 470, 565, or 617 nm). The concomitant membrane potential (V m) responses also showed a ChR variant-specific profile, with GtACR1 causing a slight increase in average V m during illumination (V plateau: -38 mV) as compared with a V plateau > -20 mV for the other ChR variants. On repetitive activation at increasing frequencies (10-ms pulses at 1-10 Hz for 30 s), peak currents, which are important for cardiac pacing, decreased with increasing activation frequencies by 17-78% (p < 0.05), while plateau currents, which are critical for arrhythmia termination, decreased by 10-75% (p < 0.05), both in a variant-specific manner. In contrast, the corresponding V plateau remained largely stable. Importantly, current properties and V m responses were not statistically different between the PE and CTL groups, irrespective of the variant used (p > 0.05). Conclusion: Our data show that ChR variants function equally well in cell culture models of healthy and pathologically hypertrophic myocardium but show strong, variant-specific use-dependence. This use-dependent nature of ChR function should be taken into account during the design of cardiac optogenetic studies and the interpretation of the experimental findings thereof.

7.
Am J Physiol Heart Circ Physiol ; 320(1): H245-H247, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33275530

RESUMO

Atrial fibrillation (AF), the most common persistent arrhythmia, is terminated most effectively by electrical cardioversion. This therapy requires in-hospital sedation to relieve the pain caused by electric shocks. Recently, our research group showed how the heart itself could be enabled to detect and terminate arrhythmias, including AF, thereby revealing the discovery of fully biological, shock-free cardioversion. Because of its biological nature, neither electric shocks nor hardware/software is required for sinus rhythm (SR) restoration, which creates a new perspective for ambulatory AF termination. Increasing evidence suggests that patients may indeed benefit from such continuous real-time rhythm control.


Assuntos
Potenciais de Ação , Assistência Ambulatorial , Fibrilação Atrial/terapia , Cardioversão Elétrica , Sistema de Condução Cardíaco/fisiopatologia , Frequência Cardíaca , Animais , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/fisiopatologia , Humanos , Recuperação de Função Fisiológica , Resultado do Tratamento
8.
Chaos ; 30(12): 121107, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33380016

RESUMO

Excitable media sustain circulating waves. In the heart, sustained circulating waves can lead to serious impairment or even death. To investigate factors affecting the stability of such waves, we have used optogenetic techniques to stimulate a region at the apex of a mouse heart at a fixed delay after the detection of excitation at the base of the heart. For long delays, rapid circulating rhythms can be sustained, whereas for shorter delays, there are paroxysmal bursts of activity that start and stop spontaneously. By considering the dependence of the action potential and conduction velocity on the preceding recovery time using restitution curves, as well as the reduced excitability (fatigue) due to the rapid excitation, we model prominent features of the dynamics including alternation of the duration of the excited phases and conduction times, as well as termination of the bursts for short delays. We propose that this illustrates universal mechanisms that exist in biological systems for the self-termination of such activities.


Assuntos
Sistema de Condução Cardíaco , Coração , Potenciais de Ação , Animais , Arritmias Cardíacas , Camundongos
9.
Elife ; 92020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32510321

RESUMO

Homeostatic regulation protects organisms against hazardous physiological changes. However, such regulation is limited in certain organs and associated biological processes. For example, the heart fails to self-restore its normal electrical activity once disturbed, as with sustained arrhythmias. Here we present proof-of-concept of a biological self-restoring system that allows automatic detection and correction of such abnormal excitation rhythms. For the heart, its realization involves the integration of ion channels with newly designed gating properties into cardiomyocytes. This allows cardiac tissue to i) discriminate between normal rhythm and arrhythmia based on frequency-dependent gating and ii) generate an ionic current for termination of the detected arrhythmia. We show in silico, that for both human atrial and ventricular arrhythmias, activation of these channels leads to rapid and repeated restoration of normal excitation rhythm. Experimental validation is provided by injecting the designed channel current for arrhythmia termination in human atrial myocytes using dynamic clamp.


Assuntos
Arritmias Cardíacas/metabolismo , Fenômenos Eletrofisiológicos/fisiologia , Ativação do Canal Iônico , Canais Iônicos/fisiologia , Miócitos Cardíacos/fisiologia , Linhagem Celular , Simulação por Computador , Humanos , Técnicas de Patch-Clamp , Reprodutibilidade dos Testes
10.
Front Physiol ; 9: 1381, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30344493

RESUMO

The onset of cardiac arrhythmias depends on the electrophysiological and structural properties of cardiac tissue. Electrophysiological remodeling of myocytes due to the presence of adipocytes constitutes a possibly important pathway in the pathogenesis of atrial fibrillation. In this paper we perform an in-silico study of the effect of such myocyte remodeling on the onset of atrial arrhythmias and study the dynamics of arrhythmia sources-spiral waves. We use the Courtemanche model for atrial myocytes and modify their electrophysiological properties based on published cellular electrophysiological measurements in myocytes co-cultered with adipocytes (a 69-87 % increase in APD 90 and an increase of the RMP by 2.5-5.5 mV). In a generic 2D setup we show that adipose tissue remodeling substantially affects the spiral wave dynamics resulting in complex arrhythmia and such arrhythmia can be initiated under high frequency pacing if the size of the remodeled tissue is sufficiently large. These results are confirmed in simulations with an anatomically accurate model of the human atria.

11.
Sci Rep ; 8(1): 2050, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29391548

RESUMO

The onset of cardiac arrhythmias depends on electrophysiological and structural properties of cardiac tissue. One of the most important changes leading to arrhythmias is characterised by the presence of a large number of non-excitable cells in the heart, of which the most well-known example is fibrosis. Recently, adipose tissue was put forward as another similar factor contributing to cardiac arrhythmias. Adipocytes infiltrate into cardiac tissue and produce in-excitable obstacles that interfere with myocardial conduction. However, adipose infiltrates have a different spatial texture than fibrosis. Over the course of time, adipose tissue also remodels into fibrotic tissue. In this paper we investigate the arrhythmogenic mechanisms resulting from the presence of adipose tissue in the heart using computer modelling. We use the TP06 model for human ventricular cells and study how the size and percentage of adipose infiltrates affects basic properties of wave propagation and the onset of arrhythmias under high frequency pacing in a 2D model for cardiac tissue. We show that although presence of adipose infiltrates can result in the onset of cardiac arrhythmias, its impact is less than that of fibrosis. We quantify this process and discuss how the remodelling of adipose infiltrates affects arrhythmia onset.


Assuntos
Adipócitos/patologia , Arritmias Cardíacas/patologia , Modelos Cardiovasculares , Miofibroblastos/patologia , Adipócitos/fisiologia , Arritmias Cardíacas/fisiopatologia , Movimento Celular , Humanos , Miócitos Cardíacos/patologia , Miofibroblastos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...