Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioinspir Biomim ; 17(6)2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-35803253

RESUMO

Deployable membranes are being increasingly applied in numerous space projects owing to their light weight, small stowage volume and capacity for use at large scales. The geometric design of biomimetic folding is studied to design crease patterns for triangular deployable membranes applied in space. Various crease designs for triangular membranes based on leaf-in, leaf-out and orthogonal patterns are put forward, especially patterns composed of triangular and hexagonal units. In order to analyse the membrane folding method based on biomimetic folding, a set of evaluation indices, including linear dimension ratio, deployment ratio, crease length and junction number, are established. The indices for various membrane folding patterns are calculated according to the crease distributions and geometric relations. Furthermore, a parametric study of crease parameters is performed to determine how the parameters affect folding behaviour and deployment efficiency. These indices can provide an indication to help with the selection of crease patterns and folding parameters for triangular deployable membranes according to the required performance and space mission requirements.


Assuntos
Biomimética , Membranas
2.
Adv Sci (Weinh) ; 8(15): e2100249, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34050725

RESUMO

As the understanding of disease grows, so does the opportunity for personalization of therapies targeted to the needs of the individual. To bring about a step change in the personalization of medical devices it is shown that multi-material inkjet-based 3D printing can meet this demand by combining functional materials, voxelated manufacturing, and algorithmic design. In this paper composite structures designed with both controlled deformation and reduced biofilm formation are manufactured using two formulations that are deposited selectively and separately. The bacterial biofilm coverage of the resulting composites is reduced by up to 75% compared to commonly used silicone rubbers, without the need for incorporating bioactives. Meanwhile, the composites can be tuned to meet user defined mechanical performance with ±10% deviation. Device manufacture is coupled to finite element modelling and a genetic algorithm that takes the user-specified mechanical deformation and computes the distribution of materials needed to meet this under given load constraints through a generative design process. Manufactured products are assessed against the mechanical and bacterial cell-instructive specifications and illustrate how multifunctional personalization can be achieved using generative design driven multi-material inkjet based 3D printing.


Assuntos
Biofilmes , Equipamentos e Provisões/microbiologia , Impressão Tridimensional , Tinta
3.
Biomech Model Mechanobiol ; 15(4): 1005-17, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26497188

RESUMO

A viscoelastic, compressible model is proposed to rationalize the recently reported response of human amnion in multiaxial relaxation and creep experiments. The theory includes two viscoelastic contributions responsible for the short- and long-term time-dependent response of the material. These two contributions can be related to physical processes: water flow through the tissue and dissipative characteristics of the collagen fibers, respectively. An accurate agreement of the model with the mean tension and kinematic response of amnion in uniaxial relaxation tests was achieved. By variation of a single linear factor that accounts for the variability among tissue samples, the model provides very sound predictions not only of the uniaxial relaxation but also of the uniaxial creep and strip-biaxial relaxation behavior of individual samples. This suggests that a wide range of viscoelastic behaviors due to patient-specific variations in tissue composition can be represented by the model without the need of recalibration and parameter identification.


Assuntos
Âmnio/fisiologia , Elasticidade , Modelos Biológicos , Humanos , Estresse Mecânico , Viscosidade
4.
Acta Biomater ; 11: 314-23, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25240983

RESUMO

Characterizing the mechanical response of the human amnion is essential to understand and to eventually prevent premature rupture of fetal membranes. In this study, a large set of macroscopic and microscopic mechanical tests have been carried out on fresh unfixed amnion to gain insight into the time-dependent material response and the underlying mechanisms. Creep and relaxation responses of amnion were characterized in macroscopic uniaxial tension, biaxial tension and inflation configurations. For the first time, these experiments were complemented by microstructural information from nonlinear laser scanning microscopy performed during in situ uniaxial relaxation tests. The amnion showed large tension reduction during relaxation and small inelastic strain accumulation in creep. The short-term relaxation response was related to a concomitant in-plane and out-of-plane contraction, and was dependent on the testing configuration. The microscopic investigation revealed a large volume reduction at the beginning, but no change of volume was measured long-term during relaxation. Tension-strain curves normalized with respect to the maximum strain were highly repeatable in all configurations and allowed the quantification of corresponding characteristic parameters. The present data indicate that dissipative behavior of human amnion is related to two mechanisms: (i) volume reduction due to water outflow (up to ∼20 s) and (ii) long-term dissipative behavior without macroscopic deformation and no systematic global reorientation of collagen fibers.


Assuntos
Âmnio/citologia , Âmnio/fisiologia , Modelos Biológicos , Simulação por Computador , Módulo de Elasticidade/fisiologia , Humanos , Técnicas In Vitro , Estresse Mecânico , Resistência à Tração/fisiologia , Viscosidade
5.
Macromol Chem Phys ; 215(9): 859-866, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-25866454

RESUMO

A new method is presented for the extraction of single-chain form factors and interchain interference functions from a range of small-angle neutron scattering (SANS) experiments on bimodal homopolymer blends. The method requires a minimum of three blends, made up of hydrogenated and deuterated components with matched degree of polymerization at two different chain lengths, but with carefully varying deuteration levels. The method is validated through an experimental study on polystyrene homopolymer bimodal blends with [Formula: see text]. By fitting Debye functions to the structure factors, it is shown that there is good agreement between the molar mass of the components obtained from SANS and from chromatography. The extraction method also enables, for the first time, interchain scattering functions to be produced for scattering between chains of different lengths. [Formula: see text].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...