Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Talanta ; 167: 754-760, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28340789

RESUMO

The current work presents the optimization of a protocol enabling direct extraction of avocado samples by a new Solid Phase Microextraction matrix compatible coating. In order to further extend the coating life time, pre-desorption and post-desorption washing steps were optimized for solvent type, time, and degree of agitation employed. Using optimized conditions, lifetime profiles of the coating related to extraction of a group of analytes bearing different physical-chemical properties were obtained. Over 80 successive extractions were carried out to establish coating efficiency using PDMS/DVB 65µm commercial coating in comparison with the PDMS/DVB/PDMS. The PDMS/DVB coating was more prone to irreversible matrix attachment on its surface, with consequent reduction of its extractive performance after 80 consecutive extractions. Conversely, the PDMS/DVB/PDMS coating showed enhanced inertness towards matrix fouling due to its outer smooth PDMS layer. This work represents the first step towards the development of robust SPME methods for quantification of contaminants in avocado as well as other fatty-based matrices, with minimal sample pre-treatment prior to extraction. In addition, an evaluation of matrix components attachment on the coating surface and related artifacts created by desorption of the coating at high temperatures in the GC-injector port, has been performed by GCxGC-ToF/MS.


Assuntos
Análise de Alimentos/métodos , Contaminação de Alimentos/análise , Persea/química , Microextração em Fase Sólida/métodos , Dimetilpolisiloxanos , Cromatografia Gasosa-Espectrometria de Massas , Limite de Detecção
2.
J Anal Methods Chem ; 2015: 951748, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25945282

RESUMO

Mushrooms are sources of food, medicines, and agricultural means. Not much is reported in the literature about wild species of the Mediterranean flora, although many of them are traditionally collected for human consumption. The knowledge of their chemical constituents could represent a valid tool for both taxonomic and physiological characterizations. In this work, a headspace-solid-phase microextraction (HS-SPME) method coupled with GC-MS and GC-FID was developed to evaluate the volatile profiles of ten wild mushroom species collected in South Italy. In addition, in order to evaluate the potential of this analytical methodology for true quantitation of volatiles, samples of the cultivated species Agaricus bisporus were analyzed. The choice of this mushroom was dictated by its ease of availability in the food market, due to the consistent amounts required for SPME method development. For calibration of the main volatile compounds, the standard addition method was chosen. Finally, the assessed volatile composition of A. bisporus was monitored in order to evaluate compositional changes occurring during storage, which represents a relevant issue for such a wide consumption edible product.

3.
Phytochem Anal ; 25(5): 468-75, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24692205

RESUMO

INTRODUCTION: Ruta chalepensis L. (Rutaceae) is widespread in the Mediterranean area. This plant has a solid tradition in ethnomedicine because of its various biological activities. Based on previous reports, the main volatile constituents of R. chalepensis are 2-undecanone and 2-nonanone, but most are still unknown, particularly fatty acid composition. OBJECTIVE: To exhaustively characterise the chemical composition of the aerial parts from R. chalepensis plants collected from the wild in Sicily, within a project aiming at the evaluation and characterisation of medicinal plants from the Mediterranean flora. The study was directed toward the determination of volatiles and fatty acids in samples of R. chalepensis obtained from different aerial plant parts and from plants harvested at different times. METHODS: GC with flame ionisation detection, GC-MS and two-dimensional gas chromatography (GC × GC) advanced techniques, with support of dedicated mass spectral databases provided with retention index (RI) information, were applied to determine both volatiles and fatty acids. Samples were extracted by hydrodistillation and underwent methylic transesterification in order to be transformed into the correspondent fatty acid methyl esters (FAMEs). RESULTS: The monodimensional analysis by GC-MS with RI confirmed that 2-nonanone and 2-undecanone are the predominant components in all the plant parts, followed by esters and monoterpenes. A different distribution was observed of the main compounds in the various plant parts depending on the life cycle of the plant (vegetative or reproductive stage). The multidimensional GC × GC analysis allowed for a complete screening of the fatty acids. About 65% of the total were polyunsaturated fatty acids (PUFA), followed by 30% of saturated fatty acids (SFA). CONCLUSION: A detailed GC volatile fingerprint of R. chalepensis flowers, leaves, fruits and stems was established, highlighting the compositional differences depending on plant organs and life cycle. The results indicated R. chalepensis as a good source of fatty acids from the w3 and w6 series. In both essential oil and lipidic extract, many compounds were determined for the first time.


Assuntos
Cromatografia Gasosa/métodos , Ácidos Graxos/química , Cromatografia Gasosa-Espectrometria de Massas , Componentes Aéreos da Planta/química , Ruta/química , Óleos Voláteis/química , Óleos de Plantas/química
4.
J Sep Sci ; 37(7): 792-7, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24478239

RESUMO

Reversed-phase-HPLC analysis by means of superficially porous silica particle columns (fused-core) was applied to the investigation of flavonoids, coumarins, and psoralens in lime juice samples. Hesperidin (367.0 ± 16.0 ppm) and eriocitrin (148.0 ± 7.9 ppm) were the most abundant flavonoids. Fifteen coumarins and furocoumarins were determined, including bergamottin (29.6 ± 1.1 ppm), 5-geranyloxy-7-methoxycoumarin (16.5 ± 0.6 ppm), and oxypeucedanin hydrate (9.9 ± 0.5 ppm) as predominant compounds. These molecules are today well known for their beneficial effects on human health. As a consequence, the present study, beyond investigating for the first time the chemical composition of lime juice, highlights also its health-promoting qualities, due to its content of flavonoids and coumarins.


Assuntos
Bebidas , Compostos de Cálcio/química , Compostos Heterocíclicos/análise , Óxidos/química , Oxigênio/análise , Cromatografia Líquida de Alta Pressão , Cromatografia de Fase Reversa , Cumarínicos/análise , Flavonoides/análise , Furocumarinas/análise , Porosidade , Dióxido de Silício/química , Propriedades de Superfície
5.
Anal Chim Acta ; 770: 1-6, 2013 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-23498680

RESUMO

Multiple headspace-solid phase microextraction (MHS-SPME) followed by gas chromatography/mass spectrometry (GC-MS) and flame ionization detection (GC-FID) was applied to the identification and quantification of volatiles released by the mushroom Agaricus bisporus, also known as champignon. MHS-SPME allows to perform quantitative analysis of volatiles from solid matrices, free of matrix interferences. Samples analyzed were fresh mushrooms (chopped and homogenized) and mushroom-containing food dressings. 1-Octen-3-ol, 3-octanol, 3-octanone, 1-octen-3-one and benzaldehyde were common constituents of the samples analyzed. Method performance has been tested through the evaluation of limit of detection (LoD, range 0.033-0.078 ng), limit of quantification (LoQ, range 0.111-0.259 ng) and analyte recovery (92.3-108.5%). The results obtained showed quantitative differences among the samples, which can be attributed to critical factors, such as the degree of cell damage upon sample preparation, that are here discussed. Considerations on the mushrooms biochemistry and on the basic principles of MHS analysis are also presented.


Assuntos
Agaricus/química , Indústria Alimentícia/métodos , Microextração em Fase Sólida , Compostos Orgânicos Voláteis/análise , Cromatografia Gasosa-Espectrometria de Massas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA