Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 434
Filtrar
1.
Cell Stem Cell ; 31(5): 676-693.e10, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38626772

RESUMO

Frontotemporal dementia (FTD) is an incurable group of early-onset dementias that can be caused by the deposition of hyperphosphorylated tau in patient brains. However, the mechanisms leading to neurodegeneration remain largely unknown. Here, we combined single-cell analyses of FTD patient brains with a stem cell culture and transplantation model of FTD. We identified disease phenotypes in FTD neurons carrying the MAPT-N279K mutation, which were related to oxidative stress, oxidative phosphorylation, and neuroinflammation with an upregulation of the inflammation-associated protein osteopontin (OPN). Human FTD neurons survived less and elicited an increased microglial response after transplantation into the mouse forebrain, which we further characterized by single nucleus RNA sequencing of microdissected grafts. Notably, downregulation of OPN in engrafted FTD neurons resulted in improved engraftment and reduced microglial infiltration, indicating an immune-modulatory role of OPN in patient neurons, which may represent a potential therapeutic target in FTD.


Assuntos
Demência Frontotemporal , Neurônios , Osteopontina , Proteínas tau , Osteopontina/metabolismo , Osteopontina/genética , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Demência Frontotemporal/metabolismo , Humanos , Neurônios/metabolismo , Neurônios/patologia , Animais , Proteínas tau/metabolismo , Camundongos , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/patologia , Microglia/metabolismo , Microglia/patologia , Mutação/genética
2.
Hum Mol Genet ; 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38679805

RESUMO

Late-Onset Alzheimer's Disease (LOAD) is a heterogeneous neurodegenerative disorder with complex etiology and high heritability. Its multifactorial risk profile and large portions of unexplained heritability suggest the involvement of yet unidentified genetic risk factors. Here we describe the "whole person" genetic risk landscape of polygenic risk scores for 2218 traits in 2044 elderly individuals and test if novel eigen-PRSs derived from clustered subnetworks of single-trait PRSs can improve the prediction of LOAD diagnosis, rates of cognitive decline, and canonical LOAD neuropathology. Network analyses revealed distinct clusters of PRSs with clinical and biological interpretability. Novel eigen-PRSs (ePRS) from these clusters significantly improved LOAD-related phenotypes prediction over current state-of-the-art LOAD PRS models. Notably, an ePRS representing clusters of traits related to cholesterol levels was able to improve variance explained in a model of the brain-wide beta-amyloid burden by 1.7% (likelihood ratio test P = 9.02 × 10-7). All associations of ePRS with LOAD phenotypes were eliminated by the removal of APOE-proximal loci. However, our association analysis identified modules characterized by PRSs of high cholesterol and LOAD. We believe this is due to the influence of the APOE region from both PRSs. We found significantly higher mean SNP effects for LOAD in the intersecting APOE region SNPs. Combining genetic risk factors for vascular traits and dementia could improve current single-trait PRS models of LOAD, enhancing the use of PRS in risk stratification. Our results are catalogued for the scientific community, to aid in generating new hypotheses based on our maps of clustered PRSs and associations with LOAD-related phenotypes.

3.
bioRxiv ; 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38659743

RESUMO

INTRODUCTION: Multi-omics studies in Alzheimer's disease (AD) revealed many potential disease pathways and therapeutic targets. Despite their promise of precision medicine, these studies lacked African Americans (AA) and Latin Americans (LA), who are disproportionately affected by AD. METHODS: To bridge this gap, Accelerating Medicines Partnership in AD (AMP-AD) expanded brain multi-omics profiling to multi-ethnic donors. RESULTS: We generated multi-omics data and curated and harmonized phenotypic data from AA (n=306), LA (n=326), or AA and LA (n=4) brain donors plus Non-Hispanic White (n=252) and other (n=20) ethnic groups, to establish a foundational dataset enriched for AA and LA participants. This study describes the data available to the research community, including transcriptome from three brain regions, whole genome sequence, and proteome measures. DISCUSSION: Inclusion of traditionally underrepresented groups in multi-omics studies is essential to discover the full spectrum of precision medicine targets that will be pertinent to all populations affected with AD.

4.
Res Sq ; 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38562777

RESUMO

Mitochondrial oxidative phosphorylation (OxPhos) powers brain activity1,2, and mitochondrial defects are linked to neurodegenerative and neuropsychiatric disorders3,4, underscoring the need to define the brain's molecular energetic landscape5-10. To bridge the cognitive neuroscience and cell biology scale gap, we developed a physical voxelization approach to partition a frozen human coronal hemisphere section into 703 voxels comparable to neuroimaging resolution (3×3×3 mm). In each cortical and subcortical brain voxel, we profiled mitochondrial phenotypes including OxPhos enzyme activities, mitochondrial DNA and volume density, and mitochondria-specific respiratory capacity. We show that the human brain contains a diversity of mitochondrial phenotypes driven by both topology and cell types. Compared to white matter, grey matter contains >50% more mitochondria. We show that the more abundant grey matter mitochondria also are biochemically optimized for energy transformation, particularly among recently evolved cortical brain regions. Scaling these data to the whole brain, we created a backward linear regression model integrating several neuroimaging modalities11, thereby generating a brain-wide map of mitochondrial distribution and specialization that predicts mitochondrial characteristics in an independent brain region of the same donor brain. This new approach and the resulting MitoBrainMap of mitochondrial phenotypes provide a foundation for exploring the molecular energetic landscape that enables normal brain functions, relating it to neuroimaging data, and defining the subcellular basis for regionalized brain processes relevant to neuropsychiatric and neurodegenerative disorders.

5.
Alzheimers Dement ; 20(5): 3290-3304, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38511601

RESUMO

INTRODUCTION: Genome-wide association studies (GWAS) have identified loci associated with Alzheimer's disease (AD) but did not identify specific causal genes or variants within those loci. Analysis of whole genome sequence (WGS) data, which interrogates the entire genome and captures rare variations, may identify causal variants within GWAS loci. METHODS: We performed single common variant association analysis and rare variant aggregate analyses in the pooled population (N cases = 2184, N controls = 2383) and targeted analyses in subpopulations using WGS data from the Alzheimer's Disease Sequencing Project (ADSP). The analyses were restricted to variants within 100 kb of 83 previously identified GWAS lead variants. RESULTS: Seventeen variants were significantly associated with AD within five genomic regions implicating the genes OARD1/NFYA/TREML1, JAZF1, FERMT2, and SLC24A4. KAT8 was implicated by both single variant and rare variant aggregate analyses. DISCUSSION: This study demonstrates the utility of leveraging WGS to gain insights into AD loci identified via GWAS.


Assuntos
Doença de Alzheimer , Estudo de Associação Genômica Ampla , Sequenciamento Completo do Genoma , Humanos , Doença de Alzheimer/genética , Feminino , Masculino , Predisposição Genética para Doença/genética , Idoso , Polimorfismo de Nucleotídeo Único/genética , Variação Genética/genética
6.
Alzheimers Dement ; 20(4): 2952-2967, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38470006

RESUMO

BACKGROUND: Impairment of the ubiquitin-proteasome system (UPS) has been implicated in abnormal protein accumulation in Alzheimer's disease. It remains unclear if genetic variation affects the intrinsic properties of neurons that render some individuals more vulnerable to UPS impairment. METHODS: Induced pluripotent stem cell (iPSC)-derived neurons were generated from over 50 genetically variant and highly characterized participants of cohorts of aging. Proteomic profiling, proteasome activity assays, and Western blotting were employed to examine neurons at baseline and in response to UPS perturbation. RESULTS: Neurons with lower basal UPS activity were more vulnerable to tau accumulation following mild UPS inhibition. Chronic reduction in proteasome activity in human neurons induced compensatory elevation of regulatory proteins involved in proteostasis and several proteasome subunits. DISCUSSION: These findings reveal that genetic variation influences basal UPS activity in human neurons and differentially sensitizes them to external factors perturbing the UPS, leading to the accumulation of aggregation-prone proteins such as tau. HIGHLIGHTS: Polygenic risk score for AD is associated with the ubiquitin-proteasome system (UPS) in neurons. Basal proteasome activity correlates with aggregation-prone protein levels in neurons. Genetic variation affects the response to proteasome inhibition in neurons. Neuronal proteasome perturbation induces an elevation in specific proteins involved in proteostasis. Low basal proteasome activity leads to enhanced tau accumulation with UPS challenge.


Assuntos
Complexo de Endopeptidases do Proteassoma , Ubiquitina , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Proteostase , Proteômica , Neurônios/metabolismo
7.
bioRxiv ; 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38496679

RESUMO

Mitochondrial oxidative phosphorylation (OxPhos) powers brain activity1,2, and mitochondrial defects are linked to neurodegenerative and neuropsychiatric disorders3,4, underscoring the need to define the brain's molecular energetic landscape5-10. To bridge the cognitive neuroscience and cell biology scale gap, we developed a physical voxelization approach to partition a frozen human coronal hemisphere section into 703 voxels comparable to neuroimaging resolution (3×3×3 mm). In each cortical and subcortical brain voxel, we profiled mitochondrial phenotypes including OxPhos enzyme activities, mitochondrial DNA and volume density, and mitochondria-specific respiratory capacity. We show that the human brain contains a diversity of mitochondrial phenotypes driven by both topology and cell types. Compared to white matter, grey matter contains >50% more mitochondria. We show that the more abundant grey matter mitochondria also are biochemically optimized for energy transformation, particularly among recently evolved cortical brain regions. Scaling these data to the whole brain, we created a backward linear regression model integrating several neuroimaging modalities11, thereby generating a brain-wide map of mitochondrial distribution and specialization that predicts mitochondrial characteristics in an independent brain region of the same donor brain. This new approach and the resulting MitoBrainMap of mitochondrial phenotypes provide a foundation for exploring the molecular energetic landscape that enables normal brain functions, relating it to neuroimaging data, and defining the subcellular basis for regionalized brain processes relevant to neuropsychiatric and neurodegenerative disorders.

8.
Nat Genet ; 56(4): 605-614, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38514782

RESUMO

The relationship between genetic variation and gene expression in brain cell types and subtypes remains understudied. Here, we generated single-nucleus RNA sequencing data from the neocortex of 424 individuals of advanced age; we assessed the effect of genetic variants on RNA expression in cis (cis-expression quantitative trait loci) for seven cell types and 64 cell subtypes using 1.5 million transcriptomes. This effort identified 10,004 eGenes at the cell type level and 8,099 eGenes at the cell subtype level. Many eGenes are only detected within cell subtypes. A new variant influences APOE expression only in microglia and is associated with greater cerebral amyloid angiopathy but not Alzheimer's disease pathology, after adjusting for APOEε4, providing mechanistic insights into both pathologies. Furthermore, only a TMEM106B variant affects the proportion of cell subtypes. Integration of these results with genome-wide association studies highlighted the targeted cell type and probable causal gene within Alzheimer's disease, schizophrenia, educational attainment and Parkinson's disease loci.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , Estudo de Associação Genômica Ampla/métodos , Encéfalo/metabolismo , Locos de Características Quantitativas/genética , Variação Genética/genética , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética
9.
medRxiv ; 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38313266

RESUMO

Impaired glucose uptake in the brain is one of the earliest presymptomatic manifestations of Alzheimer's disease (AD). The absence of symptoms for extended periods of time suggests that compensatory metabolic mechanisms can provide resilience. Here, we introduce the concept of a systemic 'bioenergetic capacity' as the innate ability to maintain energy homeostasis under pathological conditions, potentially serving as such a compensatory mechanism. We argue that fasting blood acylcarnitine profiles provide an approximate peripheral measure for this capacity that mirrors bioenergetic dysregulation in the brain. Using unsupervised subgroup identification, we show that fasting serum acylcarnitine profiles of participants from the AD Neuroimaging Initiative yields bioenergetically distinct subgroups with significant differences in AD biomarker profiles and cognitive function. To assess the potential clinical relevance of this finding, we examined factors that may offer diagnostic and therapeutic opportunities. First, we identified a genotype affecting the bioenergetic capacity which was linked to succinylcarnitine metabolism and significantly modulated the rate of future cognitive decline. Second, a potentially modifiable influence of beta-oxidation efficiency seemed to decelerate bioenergetic aging and disease progression. Our findings, which are supported by data from more than 9,000 individuals, suggest that interventions tailored to enhance energetic health and to slow bioenergetic aging could mitigate the risk of symptomatic AD, especially in individuals with specific mitochondrial genotypes.

10.
Neurobiol Aging ; 137: 1-7, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38394722

RESUMO

In a recent proteome-wide study, we identified several candidate proteins for drug discovery whose cortical abundance was associated with cognitive resilience to late-life brain pathologies. This study examines the extent to which these proteins are associated with the brain structures of cognitive resilience in decedents from the Religious Orders Study and Memory and Aging Project. Six proteins were associated with brain morphometric characteristics related to higher resilience (i.e., larger anterior and medial temporal lobe volumes), and five were associated with morphometric characteristics related to lower resilience (i.e., enlarged ventricles). Two synaptic proteins, RPH3A and CPLX1, remained inversely associated with the lower resilience signature, after further controlling for 10 neuropathologic indices. These findings suggest preserved brain structure in periventricular regions as a potential mechanism by which RPH3A and CPLX1 are associated with cognitive resilience. Further work is needed to elucidate other mechanisms by which targeting these proteins can circumvent the effects of pathology on individuals at risk for cognitive decline.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Resiliência Psicológica , Humanos , Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Disfunção Cognitiva/patologia , Cognição
11.
bioRxiv ; 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38370689

RESUMO

While efforts to identify microglial subtypes have recently accelerated, the relation of transcriptomically defined states to function has been largely limited to in silico annotations. Here, we characterize a set of pharmacological compounds that have been proposed to polarize human microglia towards two distinct states - one enriched for AD and MS genes and another characterized by increased expression of antigen presentation genes. Using different model systems including HMC3 cells, iPSC-derived microglia and cerebral organoids, we characterize the effect of these compounds in mimicking human microglial subtypes in vitro. We show that the Topoisomerase I inhibitor Camptothecin induces a CD74high/MHChigh microglial subtype which is specialized in amyloid beta phagocytosis. Camptothecin suppressed amyloid toxicity and restored microglia back to their homeostatic state in a zebrafish amyloid model. Our work provides avenues to recapitulate human microglial subtypes in vitro, enabling functional characterization and providing a foundation for modulating human microglia in vivo.

12.
Transl Psychiatry ; 14(1): 83, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331937

RESUMO

Changes in high-affinity nicotinic acetylcholine receptors are intricately connected to neuropathology in Alzheimer's Disease (AD). Protective and cognitive-enhancing roles for the nicotinic α5 subunit have been identified, but this gene has not been closely examined in the context of human aging and dementia. Therefore, we investigate the nicotinic α5 gene CHRNA5 and the impact of relevant single nucleotide polymorphisms (SNPs) in prefrontal cortex from 922 individuals with matched genotypic and post-mortem RNA sequencing in the Religious Orders Study and Memory and Aging Project (ROS/MAP). We find that a genotype robustly linked to increased expression of CHRNA5 (rs1979905A2) predicts significantly reduced cortical ß-amyloid load. Intriguingly, co-expression analysis suggests CHRNA5 has a distinct cellular expression profile compared to other nicotinic receptor genes. Consistent with this prediction, single nucleus RNA sequencing from 22 individuals reveals CHRNA5 expression is disproportionately elevated in chandelier neurons, a distinct subtype of inhibitory neuron known for its role in excitatory/inhibitory (E/I) balance. We show that chandelier neurons are enriched in amyloid-binding proteins compared to basket cells, the other major subtype of PVALB-positive interneurons. Consistent with the hypothesis that nicotinic receptors in chandelier cells normally protect against ß-amyloid, cell-type proportion analysis from 549 individuals reveals these neurons show amyloid-associated vulnerability only in individuals with impaired function/trafficking of nicotinic α5-containing receptors due to homozygosity of the missense CHRNA5 SNP (rs16969968A2). Taken together, these findings suggest that CHRNA5 and its nicotinic α5 subunit exert a neuroprotective role in aging and Alzheimer's disease centered on chandelier interneurons.


Assuntos
Doença de Alzheimer , Receptores Nicotínicos , Humanos , Doença de Alzheimer/metabolismo , Receptores Nicotínicos/genética , Nicotina/farmacologia , Neurônios/metabolismo , Peptídeos beta-Amiloides/metabolismo , Envelhecimento/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo
13.
JMIR Public Health Surveill ; 10: e45429, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319703

RESUMO

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic has negatively affected the social fabric. OBJECTIVE: We evaluated the associations between personal social networks and neurological function in people with multiple sclerosis (pwMS) and controls in the prepandemic and pandemic periods. METHODS: During the early pandemic (March-December 2020), 8 cohorts of pwMS and controls completed a questionnaire quantifying the structure and composition of their personal social networks, including the health behaviors of network members. Participants from 3 of the 8 cohorts had additionally completed the questionnaire before the pandemic (2017-2019). We assessed neurological function using 3 interrelated patient-reported outcomes: Patient Determined Disease Steps (PDDS), Multiple Sclerosis Rating Scale-Revised (MSRS-R), and Patient-Reported Outcomes Measurement Information System (PROMIS) Physical Function. We identified the network features associated with neurological function using paired 2-tailed t tests and covariate-adjusted regressions. RESULTS: In the cross-sectional analysis of the pandemic data from 1130 pwMS and 1250 controls during the pandemic, having a higher percentage of network members with a perceived negative health influence was associated with worse disability in pwMS (MSRS-R: ß=2.181, 95% CI 1.082-3.279; P<.001) and poor physical function in controls (PROMIS Physical Function: ß=-5.707, 95% CI -7.405 to -4.010; P<.001). In the longitudinal analysis of 230 pwMS and 136 controls, the networks of all participants contracted, given an increase in constraint (pwMS-prepandemic: mean 52.24, SD 15.81; pwMS-pandemic: mean 56.77, SD 18.91; P=.006. Controls-prepandemic: mean 48.07, SD 13.36; controls-pandemic: mean 53.99, SD 16.31; P=.001) and a decrease in network size (pwMS-prepandemic: mean 8.02, SD 5.70; pwMS-pandemic: mean 6.63, SD 4.16; P=.003. Controls-prepandemic: mean 8.18, SD 4.05; controls-pandemic: mean 6.44, SD 3.92; P<.001), effective size (pwMS-prepandemic: mean 3.30, SD 1.59; pwMS-pandemic: mean 2.90, SD 1.50; P=.007. Controls-prepandemic: mean 3.85, SD 1.56; controls-pandemic: mean 3.40, SD 1.55; P=.01), and maximum degree (pwMS-prepandemic: mean 4.78, SD 1.86; pwMS-pandemic: mean 4.32, SD 1.92; P=.01. Controls-prepandemic: mean 5.38, SD 1.94; controls-pandemic: mean 4.55, SD 2.06; P<.001). These network changes were not associated with worsening function. The percentage of kin in the networks of pwMS increased (mean 46.06%, SD 29.34% to mean 54.36%, SD 30.16%; P=.003) during the pandemic, a change that was not seen in controls. CONCLUSIONS: Our findings suggest that high perceived negative health influence in the network was associated with worse function in all participants during the pandemic. The networks of all participants became tighter knit, and the percentage of kin in the networks of pwMS increased during the pandemic. Despite these perturbations in social connections, network changes from the prepandemic to the pandemic period were not associated with worsening function in all participants, suggesting possible resilience.


Assuntos
COVID-19 , Esclerose Múltipla , Fenilenodiaminas , Humanos , COVID-19/epidemiologia , Estudos de Casos e Controles , Estudos Transversais , Esclerose Múltipla/epidemiologia , Pandemias
14.
bioRxiv ; 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38260600

RESUMO

Alzheimer's disease (AD) is an age-associated neurodegenerative disorder characterized by progressive neuronal loss and pathological accumulation of the misfolded proteins amyloid-ß and tau1,2. Neuroinflammation mediated by microglia and brain-resident macrophages plays a crucial role in AD pathogenesis1-5, though the mechanisms by which age, genes, and other risk factors interact remain largely unknown. Somatic mutations accumulate with age and lead to clonal expansion of many cell types, contributing to cancer and many non-cancer diseases6,7. Here we studied somatic mutation in normal aged and AD brains by three orthogonal methods and in three independent AD cohorts. Analysis of bulk RNA sequencing data from 866 samples from different brain regions revealed significantly higher (~two-fold) overall burdens of somatic single-nucleotide variants (sSNVs) in AD brains compared to age-matched controls. Molecular-barcoded deep (>1000X) gene panel sequencing of 311 prefrontal cortex samples showed enrichment of sSNVs and somatic insertions and deletions (sIndels) in cancer driver genes in AD brain compared to control, with recurrent, and often multiple, mutations in genes implicated in clonal hematopoiesis (CH)8,9. Pathogenic sSNVs were enriched in CSF1R+ microglia of AD brains, and the high proportion of microglia (up to 40%) carrying some sSNVs in cancer driver genes suggests mutation-driven microglial clonal expansion (MiCE). Analysis of single-nucleus RNA sequencing (snRNAseq) from temporal neocortex of 62 additional AD cases and controls exhibited nominally increased mosaic chromosomal alterations (mCAs) associated with CH10,11. Microglia carrying mCA showed upregulated pro-inflammatory genes, resembling the transcriptomic features of disease-associated microglia (DAM) in AD. Our results suggest that somatic driver mutations in microglia are common with normal aging but further enriched in AD brain, driving MiCE with inflammatory and DAM signatures. Our findings provide the first insights into microglial clonal dynamics in AD and identify potential new approaches to AD diagnosis and therapy.

15.
Alzheimers Res Ther ; 16(1): 14, 2024 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245754

RESUMO

BACKGROUND: Uncovering the functional relevance underlying verbal declarative memory (VDM) genome-wide association study (GWAS) results may facilitate the development of interventions to reduce age-related memory decline and dementia. METHODS: We performed multi-omics and pathway enrichment analyses of paragraph (PAR-dr) and word list (WL-dr) delayed recall GWAS from 29,076 older non-demented individuals of European descent. We assessed the relationship between single-variant associations and expression quantitative trait loci (eQTLs) in 44 tissues and methylation quantitative trait loci (meQTLs) in the hippocampus. We determined the relationship between gene associations and transcript levels in 53 tissues, annotation as immune genes, and regulation by transcription factors (TFs) and microRNAs. To identify significant pathways, gene set enrichment was tested in each cohort and meta-analyzed across cohorts. Analyses of differential expression in brain tissues were conducted for pathway component genes. RESULTS: The single-variant associations of VDM showed significant linkage disequilibrium (LD) with eQTLs across all tissues and meQTLs within the hippocampus. Stronger WL-dr gene associations correlated with reduced expression in four brain tissues, including the hippocampus. More robust PAR-dr and/or WL-dr gene associations were intricately linked with immunity and were influenced by 31 TFs and 2 microRNAs. Six pathways, including type I diabetes, exhibited significant associations with both PAR-dr and WL-dr. These pathways included fifteen MHC genes intricately linked to VDM performance, showing diverse expression patterns based on cognitive status in brain tissues. CONCLUSIONS: VDM genetic associations influence expression regulation via eQTLs and meQTLs. The involvement of TFs, microRNAs, MHC genes, and immune-related pathways contributes to VDM performance in older individuals.


Assuntos
Estudo de Associação Genômica Ampla , MicroRNAs , Humanos , Idoso , Estudo de Associação Genômica Ampla/métodos , Multiômica , Memória , Cognição , Polimorfismo de Nucleotídeo Único/genética
16.
bioRxiv ; 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38260300

RESUMO

Alzheimer's disease (AD) is a prevalent and costly age-related dementia. Heritable factors account for 58-79% of variation in late-onset AD, but substantial variation remains in age-of- onset, disease severity, and whether those with high-risk genotypes acquire AD. To emulate the diversity of human populations, we utilized the AD-BXD mouse panel. This genetically diverse resource combines AD genotypes with multiple BXD strains to discover new genetic drivers of AD resilience. Comparing AD-BXD carriers to noncarrier littermates, we computed a novel quantitative metric for resilience to cognitive decline in the AD-BXDs. Our quantitative AD resilience trait was heritable and genetic mapping identified a locus on chr8 associated with resilience to AD mutations that resulted in amyloid brain pathology. Using a hippocampus proteomics dataset, we nominated the mitochondrial glutathione S reductase protein (GR or GSHR) as a resilience factor, finding that the DBA/2J genotype was associated with substantially higher GR abundance. By mapping protein QTLs (pQTLs), we identified synaptic organization and mitochondrial proteins coregulated in trans with a cis-pQTL for GR. We found four coexpression modules correlated with the quantitative resilience score in aged 5XFAD mice using paracliques, which were related to cell structure, protein folding, and postsynaptic densities. Finally, we found significant positive associations between human GSR transcript abundance in the brain and better outcomes on AD-related cognitive and pathology traits in the Religious Orders Study/Memory and Aging project (ROSMAP). Taken together, these data support a framework for resilience in which neuronal antioxidant pathway activity provides for stability of synapses within the hippocampus.

17.
medRxiv ; 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-37425698

RESUMO

Multiple reference panels of a given tissue or multiple tissues often exist, and multiple regression methods could be used for training gene expression imputation models for TWAS. To leverage expression imputation models (i.e., base models) trained with multiple reference panels, regression methods, and tissues, we develop a Stacked Regression based TWAS (SR-TWAS) tool which can obtain optimal linear combinations of base models for a given validation transcriptomic dataset. Both simulation and real studies showed that SR-TWAS improved power, due to increased effective training sample sizes and borrowed strength across multiple regression methods and tissues. Leveraging base models across multiple reference panels, tissues, and regression methods, our real application studies identified 6 independent significant risk genes for Alzheimer's disease (AD) dementia for supplementary motor area tissue and 9 independent significant risk genes for Parkinson's disease (PD) for substantia nigra tissue. Relevant biological interpretations were found for these significant risk genes.

18.
J Neurosci ; 44(3)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38050142

RESUMO

ZCCHC17 is a putative master regulator of synaptic gene dysfunction in Alzheimer's disease (AD), and ZCCHC17 protein declines early in AD brain tissue, before significant gliosis or neuronal loss. Here, we investigate the function of ZCCHC17 and its role in AD pathogenesis using data from human autopsy tissue (consisting of males and females) and female human cell lines. Co-immunoprecipitation (co-IP) of ZCCHC17 followed by mass spectrometry analysis in human iPSC-derived neurons reveals that ZCCHC17's binding partners are enriched for RNA-splicing proteins. ZCCHC17 knockdown results in widespread RNA-splicing changes that significantly overlap with splicing changes found in AD brain tissue, with synaptic genes commonly affected. ZCCHC17 expression correlates with cognitive resilience in AD patients, and we uncover an APOE4-dependent negative correlation of ZCCHC17 expression with tangle burden. Furthermore, a majority of ZCCHC17 interactors also co-IP with known tau interactors, and we find a significant overlap between alternatively spliced genes in ZCCHC17 knockdown and tau overexpression neurons. These results demonstrate ZCCHC17's role in neuronal RNA processing and its interaction with pathology and cognitive resilience in AD, and suggest that the maintenance of ZCCHC17 function may be a therapeutic strategy for preserving cognitive function in the setting of AD pathology.


Assuntos
Doença de Alzheimer , Resiliência Psicológica , Feminino , Humanos , Masculino , Doença de Alzheimer/metabolismo , Cognição , Neurônios/metabolismo , RNA , Splicing de RNA/genética , Proteínas tau/metabolismo
19.
medRxiv ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37961373

RESUMO

Background: Prior studies using the ADSP data examined variants within presenilin-2 ( PSEN2 ), presenilin-1 ( PSEN1 ), and amyloid precursor protein ( APP ) genes. However, previously-reported clinically-relevant variants and other predicted damaging missense (DM) variants have not been characterized in a newer release of the Alzheimer's Disease Sequencing Project (ADSP). Objective: To characterize previously-reported clinically-relevant variants and DM variants in PSEN2, PSEN1, APP within the participants from the ADSP. Methods: We identified rare variants (MAF <1%) previously-reported in PSEN2 , PSEN1, and APP in the available ADSP sample of 14,641 individuals with whole genome sequencing and 16,849 individuals with whole exome sequencing available for research-use (N total = 31,490). We additionally curated variants in these three genes from ClinVar, OMIM, and Alzforum and report carriers of variants in clinical databases as well as predicted DM variants in these genes. Results: We detected 31 previously-reported clinically-relevant variants with alternate alleles observed within the ADSP: 4 variants in PSEN2 , 25 in PSEN1 , and 2 in APP . The overall variant carrier rate for the 31 clinically-relevant variants in the ADSP was 0.3%. We observed that 79.5% of the variant carriers were cases compared to 3.9% were controls. In those with AD, the mean age of onset of AD among carriers of these clinically-relevant variants was 19.6 ± 1.4 years earlier compared with non-carriers (p-value=7.8×10 -57 ). Conclusion: A small proportion of individuals in the ADSP are carriers of a previously-reported clinically-relevant variant allele for AD and these participants have significantly earlier age of AD onset compared to non-carriers.

20.
Mult Scler Relat Disord ; 82: 105387, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38134606

RESUMO

B-cell depleting therapies are effective in multiple sclerosis (MS) and are widely used (Hauser et al., 2017). Inflammatory vaginitis (IV), characterized by unexplained vaginal symptoms including mucopurulent discharge, pain, irritation, and dyspareunia, has been reported in one MS patient on ocrelizumab (Filikci and Jensen, 2022), and to be present in 3.5 % of women on rituximab for autoimmune diseases (Yockey et al., 2021). We report here four cases of IV in B cell depleted women with MS. B-cell reconstitution was temporally associated with improvement of IV symptoms. Further investigation and vigilance for this potential treatment emergent adverse event affecting sexual and reproductive health of women with MS is needed.


Assuntos
Esclerose Múltipla , Vaginite , Feminino , Humanos , Esclerose Múltipla/complicações , Esclerose Múltipla/tratamento farmacológico , Vaginite/tratamento farmacológico , Vaginite/diagnóstico , Rituximab
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...