Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Bot ; 123(1): 19-36, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30247503

RESUMO

Background and Aims: Besides bananas belonging to the AAA triploid Mutika subgroup, which predominates in the Great Lakes countries, other AAA triploids as well as edible AA diploids, locally of considerable cultural weight, are cultivated in East Africa and in the nearby Indian Ocean islands as far as Madagascar. All these varieties call for the genetic identification and characterization of their interrelations on account of their regional socio-economic significance and their potential for banana breeding strategies. Methods: An extensive sampling of all traditional bananas in East Africa and near Indian Ocean islands was genotyped with simple sequence repeat (SSR) markers, with particular emphasis on the diploid forms and on the bananas of the Indian Ocean islands, which remain poorly characterized. Key Results: All the edible AA varieties studied here are genetically homogeneous, constituting a unique subgroup, here called 'Mchare', despite high phenotypic variation and adaptions to highly diverse ecological zones. At triploid level, and besides the well-known AAA Mutika subgroup, at least two other genetically related AAA subgroups specific to this region are identified. Neither of these East African AAA genotypes can be derived directly from the local AA Mchare diploids. However, it is demonstrated that the East African diploids and triploids together belong to the same genetic complex. The geographical distribution of their wild acuminata relatives allowed identification of the original area of this complex in a restricted part of island South-East Asia. The inferred origin leads to consideration of the history of banana introduction in Africa. Linked to biological features, documentation on the embedding of bananas in founding legends and myths and convincing linguistic elements were informative regarding the period and the peoples who introduced these Asian plants into Africa. The results point to the role of Austronesian-speaking peoples who colonized the Indian Ocean islands, particularly Madagascar, and reached the East African coasts. Conclusions: Understanding of the relations between the components of this complex and identifying their Asian wild relatives and related cultivars will be a valuable asset in breeding programmes and will boost the genetic improvement of East African bananas, but also of other globally important subgroups, in particular the AAA Cavendish.


Assuntos
Diploide , Variação Genética , Musa/genética , Triploidia , África Oriental , Sudeste Asiático
2.
New Phytol ; 210(4): 1453-65, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26832306

RESUMO

Tropical Southeast Asia, which harbors most of the Musaceae biodiversity, is one of the most species-rich regions in the world. Its high degree of endemism is shaped by the region's tectonic and climatic history, with large differences between northern Indo-Burma and the Malayan Archipelago. Here, we aim to find a link between the diversification and biogeography of Musaceae and geological history of the Southeast Asian subcontinent. The Musaceae family (including five Ensete, 45 Musa and one Musella species) was dated using a large phylogenetic framework encompassing 163 species from all Zingiberales families. Evolutionary patterns within Musaceae were inferred using ancestral area reconstruction and diversification rate analyses. All three Musaceae genera - Ensete, Musa and Musella - originated in northern Indo-Burma during the early Eocene. Musa species dispersed from 'northwest to southeast' into Southeast Asia with only few back-dispersals towards northern Indo-Burma. Musaceae colonization events of the Malayan Archipelago subcontinent are clearly linked to the geological and climatic history of the region. Musa species were only able to colonize the region east of Wallace's line after the availability of emergent land from the late Miocene onwards.


Assuntos
Biodiversidade , Musa/genética , Musaceae/genética , Sudeste Asiático , Evolução Biológica , Clima , Geografia , Musa/fisiologia , Musaceae/fisiologia , Filogenia , Dispersão Vegetal , Análise de Sequência de DNA
3.
Proc Natl Acad Sci U S A ; 108(28): 11311-8, 2011 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-21730145

RESUMO

Original multidisciplinary research hereby clarifies the complex geodomestication pathways that generated the vast range of banana cultivars (cvs). Genetic analyses identify the wild ancestors of modern-day cvs and elucidate several key stages of domestication for different cv groups. Archaeology and linguistics shed light on the historical roles of people in the movement and cultivation of bananas from New Guinea to West Africa during the Holocene. The historical reconstruction of domestication processes is essential for breeding programs seeking to diversify and improve banana cvs for the future.


Assuntos
Produtos Agrícolas/história , Musa/genética , África , Agricultura/história , Arqueologia , Cruzamento/história , Produtos Agrícolas/classificação , Produtos Agrícolas/genética , Diploide , Especiação Genética , Variação Genética , História Antiga , Musa/classificação , Nova Guiné , Filogenia , Filogeografia , Poliploidia
4.
BMC Evol Biol ; 11: 103, 2011 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-21496296

RESUMO

BACKGROUND: The classification of the Musaceae (banana) family species and their phylogenetic inter-relationships remain controversial, in part due to limited nucleotide information to complement the morphological and physiological characters. In this work the evolutionary relationships within the Musaceae family were studied using 13 species and DNA sequences obtained from a set of 19 unlinked nuclear genes. RESULTS: The 19 gene sequences represented a sample of ~16 kb of genome sequence (~73% intronic). The sequence data were also used to obtain estimates for the divergence times of the Musaceae genera and Musa sections. Nucleotide variation within the sample confirmed the close relationship of Australimusa and Callimusa sections and showed that Eumusa and Rhodochlamys sections are not reciprocally monophyletic, which supports the previous claims for the merger between the two latter sections. Divergence time analysis supported the previous dating of the Musaceae crown age to the Cretaceous/Tertiary boundary (~ 69 Mya), and the evolution of Musa to ~50 Mya. The first estimates for the divergence times of the four Musa sections were also obtained. CONCLUSIONS: The gene sequence-based phylogeny presented here provides a substantial insight into the course of speciation within the Musaceae. An understanding of the main phylogenetic relationships between banana species will help to fine-tune the taxonomy of Musaceae.


Assuntos
Classificação/métodos , Musaceae/classificação , Filogenia , Análise de Sequência de DNA/métodos , Evolução Molecular , Musa/classificação , Musa/genética , Musaceae/genética
5.
PLoS One ; 6(3): e17863, 2011 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-21445344

RESUMO

Genes coding for 45S ribosomal RNA are organized in tandem arrays of up to several thousand copies and contain 18S, 5.8S and 26S rRNA units separated by internal transcribed spacers ITS1 and ITS2. While the rRNA units are evolutionary conserved, ITS show high level of interspecific divergence and have been used frequently in genetic diversity and phylogenetic studies. In this work we report on the structure and diversity of the ITS region in 87 representatives of the family Musaceae. We provide the first detailed information on ITS sequence diversity in the genus Musa and describe the presence of more than one type of ITS sequence within individual species. Both Sanger sequencing of amplified ITS regions and whole genome 454 sequencing lead to similar phylogenetic inferences. We show that it is necessary to identify putative pseudogenic ITS sequences, which may have negative effect on phylogenetic reconstruction at lower taxonomic levels. Phylogenetic reconstruction based on ITS sequence showed that the genus Musa is divided into two distinct clades--Callimusa and Australimusa and Eumusa and Rhodochlamys. Most of the intraspecific banana hybrids analyzed contain conserved parental ITS sequences, indicating incomplete concerted evolution of rDNA loci. Independent evolution of parental rDNA in hybrids enables determination of genomic constitution of hybrids using ITS. The observation of only one type of ITS sequence in some of the presumed interspecific hybrid clones warrants further study to confirm their hybrid origin and to unravel processes leading to evolution of their genomes.


Assuntos
Musaceae/genética , Filogenia , Especificidade da Espécie
6.
Ann Bot ; 106(6): 849-57, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20858591

RESUMO

BACKGROUND: Bananas and plantains (Musa spp.) provide a staple food for many millions of people living in the humid tropics. The cultivated varieties (cultivars) are seedless parthenocarpic clones of which the origin remains unclear. Many are believed to be diploid and polyploid hybrids involving the A genome diploid M. acuminata and the B genome M. balbisiana, with the hybrid genomes consisting of a simple combination of the parental ones. Thus the genomic constitution of the diploids has been classified as AB, and that of the triploids as AAB or ABB. However, the morphology of many accessions is biased towards either the A or B phenotype and does not conform to predictions based on these genomic formulae. SCOPE: On the basis of published cytotypes (mitochondrial and chloroplast genomes), we speculate here that the hybrid banana genomes are unbalanced with respect to the parental ones, and/or that inter-genome translocation chromosomes are relatively common. We hypothesize that the evolution under domestication of cultivated banana hybrids is more likely to have passed through an intermediate hybrid, which was then involved in a variety of backcrossing events. We present experimental data supporting our hypothesis and we propose a set of experimental approaches to test it, thereby indicating other possibilities for explaining some of the unbalanced genome expressions. Progress in this area would not only throw more light on the origin of one of the most important crops, but provide data of general relevance for the evolution under domestication of many other important clonal crops. At the same time, a complex origin of the cultivated banana hybrids would imply a reconsideration of current breeding strategies.


Assuntos
Quimera/genética , Endogamia , Musa/genética , Genótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...