Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 10(9)2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32937945

RESUMO

Benzotriazoles are a new class of organic emerging pollutants ubiquitously found in the environment. The increase of their concentration to detectable values is the consequence of the inability of the Conventional Waste Water Plants (CWWPs) to abate these products. We subjected 1H-benzotriazole (BTz), tolyltriazole (TTz), and Tinuvin P (TP, a common UV plastic stabilizer) to photocatalytic degradation under UV-irradiated TiO2 in different conditions. The principal photoformed intermediates, the relationship between the degradation rate and the pH, the degree of mineralization, and the fate of the organic nitrogen were investigated. Under the adopted experimental conditions, all the studied substrates were rapidly photocatalytically transformed (the maximum degradation rates for BTz and TTz were (3.88 ± 0.05) × 10-2 and (2.11 ± 0.09) × 10-2 mM min-1, respectively) and mineralized (the mineralization rate for BTz and TTz was 4.0 × 10-3 mM C min-1 for both substrates). Different from the 1,2,4-triazole rings that are not completely mineralized under photocatalytic conditions, 1H-benzotriazole and tolyltriazole were completely mineralized with a mechanism that involved a partial conversion of organic nitrogen to N2. The photocatalytic process activated by UV-irradiated TiO2 is an efficient tool to abate 1H-benzotriazole and its derivatives, avoiding their release in the environment.

2.
J Magn Reson Imaging ; 47(3): 746-752, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28730643

RESUMO

PURPOSE: To compare the levels of gadolinium in the blood, cerebrum, cerebellum, liver, femur, kidneys, and skin after multiple exposure of rats to the macrocyclic gadolinium-based contrast agents (GBCAs) gadoterate, gadobutrol, and gadoteridol. MATERIALS AND METHODS: Fifty male Wistar Han rats were randomized to three exposure groups (n = 15 per group) and one control group (n = 5). Animals in the exposure groups received a total of 20 GBCA administrations (four administrations per week for 5 consecutive weeks) at a dose of 0.6 mmol/kg bodyweight. After a 28-day recovery period animals were sacrificed and the blood and tissues harvested for determination of gadolinium (Gd) levels. Gd determination was performed by inductively coupled plasma mass spectrometry (ICP-MS). RESULTS: After 28 days' recovery no Gd was found in the blood, liver, or skin of any animal in any group. Significantly lower levels of Gd were noted with gadoteridol compared to gadoterate and gadobutrol in the cerebellum (0.150 ± 0.022 vs. 0.292 ± 0.057 and 0.287 ± 0.056 nmol/g, respectively; P < 0.001), cerebrum (0.116 ± 0.036 vs. 0.250 ± 0.032 and 0.263 ± 0.045 nmol/g, respectively; P < 0.001), and kidneys (25 ± 13 vs. 139 ± 88 [P < 0.01] and 204 ± 109 [P < 0.001], respectively). Higher levels of Gd were noted in the femur (7.48 ± 1.37 vs. 5.69 ± 1.75 and 8.60 ± 2.04 nmol/g, respectively) with significantly less Gd determined for gadoterate than for gadobutrol (P < 0.001) and gadoteridol (P < 0.05). CONCLUSION: Differences exist between macrocyclic agents in terms of their propensity to accumulate in tissues. The observed differences in Gd concentration point to differences in GBCA washout rates in this setting and in this experimental model, with gadoteridol being the GBCA that is most efficiently removed from both cerebral and renal tissues. LEVEL OF EVIDENCE: 2 Technical Efficacy: Stage 5 J. Magn. Reson. Imaging 2018;47:746-752.


Assuntos
Encéfalo/metabolismo , Meios de Contraste/farmacocinética , Fêmur/metabolismo , Gadolínio/farmacocinética , Rim/metabolismo , Fígado/metabolismo , Pele/metabolismo , Animais , Meios de Contraste/administração & dosagem , Gadolínio/administração & dosagem , Gadolínio/sangue , Compostos Heterocíclicos/administração & dosagem , Compostos Heterocíclicos/sangue , Compostos Heterocíclicos/farmacocinética , Masculino , Modelos Animais , Compostos Organometálicos/administração & dosagem , Compostos Organometálicos/sangue , Compostos Organometálicos/farmacocinética , Ratos , Ratos Wistar
3.
Environ Sci Technol ; 51(13): 7486-7495, 2017 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-28581723

RESUMO

Irradiated nitrophenols can produce nitrite and nitrous acid (HONO) in bulk aqueous solutions and in viscous aqueous films, simulating the conditions of a high-solute-strength aqueous aerosol, with comparable quantum yields in solution and viscous films (10-5-10-4 in the case of 4-nitrophenol) and overall reaction yields up to 0.3 in solution. The process is particularly important for the para-nitrophenols, possibly because their less sterically hindered nitro groups can be released more easily as nitrite and HONO. The nitrophenols giving the highest photoproduction rates of nitrite and HONO (most notably, 4-nitrophenol and 2-methyl-4-nitrophenol) could significantly contribute to the occurrence of nitrite in aqueous phases in contact with the atmosphere. Interestingly, dew-water evaporation has shown potential to contribute to the gas-phase HONO levels during the morning, which accounts for the possible importance of the studied process.


Assuntos
Aerossóis , Nitritos , Processos Fotoquímicos , Nitrofenóis , Ácido Nitroso
4.
Sci Total Environ ; 545-546: 434-44, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26748008

RESUMO

The UVB photolysis of L-tyrosine yields species with fluorescence and absorption spectra that are very similar to those of humic substances. By potentiometric measurements, chemical modeling and the application of NMR, mass spectrometry and laser flash photolysis, it was possible to get insights into the structural and chemical properties of the compounds derived by the L-tyrosine phototransformation. The photolytic process follows aromatic-ring hydroxylation and dimerization. The latter is presumably linked with the photoinduced generation of tyrosyl (phenoxy-type) radicals, which have a marked tendency to dimerize and possibly oligomerize. Interestingly, photoinduced transformation gives compounds with protogenic and complexation capabilities similar to those of the humic substances that occur naturally in surface waters. This finding substantiates a new and potentially important abiotic (photolytic) pathway for the formation of humic compounds in surface-water environments.


Assuntos
Substâncias Húmicas/análise , Modelos Químicos , Fotólise , Tirosina/química
5.
Chemosphere ; 145: 277-83, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26688265

RESUMO

Nitrobenzene (NB) would undergo photodegradation in sunlit surface waters, mainly by direct photolysis and triplet-sensitized oxidation, with a secondary role of the *OH reaction. Its photochemical half-life time would range from a few days to a couple of months under fair-weather summertime irradiation, depending on water chemistry and depth. NB phototransformation gives phenol and the three nitrophenol isomers, in different yields depending on the considered pathway. The minor *OH role in degradation would make NB unsuitable as *OH probe in irradiated natural water samples, but the selectivity towards *OH could be increased by monitoring the formation of phenol from NB+*OH. The relevant reaction would proceed through ipso-addition of *OH on the carbon atom bearing the nitro-group, forming a pre-reactive complex that would evolve into a transition state (and then into a radical addition intermediate) with very low activation energy barrier.


Assuntos
Nitrobenzenos/efeitos da radiação , Fotólise , Poluentes Químicos da Água/efeitos da radiação , Meia-Vida , Radical Hidroxila/química , Modelos Químicos
6.
Sci Total Environ ; 527-528: 322-7, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25965046

RESUMO

Lake circulation is an important phenomenon that ensures oxygenation of the water column. Here we report that aeration of anoxic hypolimnion water causes production of highly reactive hydroxyl radicals (·OH), which are also produced photochemically in the epilimnion. Model calculations suggest that the dark process of ·OH generation can be comparable with photochemical reactions in some lake environments, provided that the hypolimnion is a significant fraction of the whole lake volume. In these cases, lake overturn could significantly contribute to the yearly ·OH budget of the lake water and might cause significant degradation of some pollutants, for which the reaction with ·OH is an important removal process from surface waters.

7.
Sci Total Environ ; 500-501: 351-60, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25240237

RESUMO

Dimethomorph (DMM) is a widely used fungicide that shows low toxicity for birds and mammals but can be quite toxic to aquatic organisms. The persistence of DMM in surface waters is thus of high importance, and this work modelled its water half-life time due to photochemical processes. Depending on environmental conditions (e.g. water chemistry, depth, season), DMM lifetime could vary from a few days to a few months. For lifetimes of a few weeks or shorter, photochemistry would be an important pathway for DMM attenuation in surface waters. Such conditions could be reached in summer, in shallow water bodies with low dissolved organic carbon (DOC) and high nitrate and/or nitrite. The main pathways accounting for DMM photodegradation in environmental waters would be the reactions with OH and with the triplet states of chromophoric dissolved organic matter, (3)CDOM* (under the hypothesis that (3)CDOM* reactivity is well described by the triplet state of anthraquinone-2-sulphonate), while direct photolysis would be less important. The OH pathway would be favoured in low-DOC waters, while the opposite conditions would favour (3)CDOM*. It was possible to detect and identify some intermediates formed upon reaction between DMM and (3)CDOM*, namely N-formylmorpholine, 4-chloroacetophenone and 4-chlorobenzoic acid. The transformation of DMM into the detected compounds would not increase the acute toxicity of the fungicide towards mammals, and the acute effects for freshwater organisms could be decreased significantly.


Assuntos
Fungicidas Industriais/química , Modelos Químicos , Morfolinas/química , Fungicidas Industriais/análise , Meia-Vida , Morfolinas/análise , Processos Fotoquímicos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química
8.
Chemosphere ; 111: 529-36, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24997962

RESUMO

The irradiation of L-tryptophan, L-tyrosine and 4-phenoxyphenol in aqueous solution produced compounds with similar fluorescence properties as humic substances, and with absorption spectra that were significantly extended into the UVA and visible regions compared to the starting compounds. The irradiated systems had photosensitizing properties, as proven by the photodegradation of 2,4,6-trimethylphenol and furfuryl alcohol (probes of excited triplet states and (1)O2, respectively). The described photochemical processes could constitute an additional pathway for the formation of humic substances in clear and shallow water bodies, which would be added to the complex network of reactions involving dissolved organic matter.


Assuntos
Cresóis/química , Furanos/química , Substâncias Húmicas/análise , Éteres Fenílicos/química , Triptofano/química , Tirosina/química , Benzopiranos/análise , Cresóis/isolamento & purificação , Fluorescência , Furanos/isolamento & purificação , Processos Fotoquímicos , Fotólise , Espectrometria de Fluorescência , Água/química
9.
Water Res ; 53: 235-48, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24525071

RESUMO

This work shows that the main photochemical pathways of acetaminophen (APAP) transformation in surface waters would be direct photolysis (with quantum yield of (4.57 ± 0.17)⋅10(-2)), reaction with CO3(-·) (most significant at pH > 7, with second-order rate constant of (3.8 ± 1.1)⋅10(8) M(-1) s(-1)) and possibly, for dissolved organic carbon higher than 5 mg C L(-1), reaction with the triplet states of chromophoric dissolved organic matter ((3)CDOM*). The modelled photochemical half-life time of APAP in environmental waters would range from days to few weeks in summertime, which suggests that the importance of phototransformation might be comparable to biodegradation. APAP transformation by the main photochemical pathways yields hydroxylated derivatives, ring-opening compounds as well as dimers and trimers (at elevated concentration levels). In the case of (3)CDOM* (for which the triplet state of anthraquinone-2-sulphonate was used as proxy), ring rearrangement is also hypothesised. Photochemistry would produce different transformation products (TPs) of APAP than microbial biodegradation or human metabolism, thus the relevant TPs might be used as markers of APAP photochemical reaction pathways in environmental waters.


Assuntos
Acetaminofen/química , Modelos Químicos , Processos Fotoquímicos , Poluentes Químicos da Água/química , Monitoramento Ambiental , Água Doce/química , Meia-Vida , Cinética , Fotólise
10.
Environ Sci Pollut Res Int ; 21(20): 11770-80, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24310903

RESUMO

Information concerning the link between surface-water photochemistry and climate is presently very scarce as only a few studies have been dedicated to the subject. On the basis of the limited knowledge that is currently available, the present inferences can be made as follows: (1) Warming can cause enhanced leaching of ionic solutes from the catchments to surface waters, including cations and more biologically labile anions such as sulphate. Preferential sulphate biodegradation followed by removal as organic sulphides in sediment could increase alkalinity, favouring the generation of the carbonate radical, CO3 (·-). However, this phenomenon would be easily offset by fluctuations of the dissolved organic carbon (DOC), which is strongly anticorrelated with CO3 (·-). Therefore, obtaining insight into DOC evolution is a key issue in understanding the link between photochemistry and climate. (2) Climate change could exacerbate water scarcity in the dry season in some regions. Fluctuations in the water column could deeply alter photochemistry that is usually favoured in shallower waters. However, the way water is lost would strongly affect the prevailing photoinduced processes. Water outflow without important changes in solute concentration would mostly favour reactions induced by the hydroxyl and carbonate radicals (·OH and CO3 (·-)). In contrast, evaporative concentration would enhance reactions mediated by singlet oxygen ((1)O2) and by the triplet states of chromophoric dissolved organic matter ((3)CDOM*). (3) In a warmer climate, the summer stratification period of lakes would last longer, thereby enhancing photochemical reactions in the epilimnion but at the same time keeping the hypolimnion water in the dark for longer periods.


Assuntos
Mudança Climática , Processos Fotoquímicos , Água/química , Análise da Demanda Biológica de Oxigênio , Clima , Propriedades de Superfície
11.
Environ Sci Technol ; 47(24): 14089-98, 2013 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-24245606

RESUMO

Water samples from shallow lakes located in Terra Nova Bay, Antarctica, were taken in the austral summer season and characterized for chemical composition, optical features, fluorescence excitation-emission matrix (EEM) and photoactivity toward the generation of (•)OH, (1)O2, and (3)CDOM* (triplet states of chromophoric dissolved organic matter). The optical properties suggested that CDOM would be largely of aquagenic origin and possibly characterized by limited photochemical processing before sampling. Moreover, the studied samples were highly photoactive and the quantum yields for the generation of (3)CDOM* and partially of (1)O2 and (•)OH were considerably higher compared to water samples from temperate environments. This finding suggests that water in the studied lakes would have considerable ability to photosensitize the degradation of dissolved compounds during the austral summer, possibly including organic pollutants, also considering that the irradiance conditions of the experiments were not far from those observed on the Antarctic coast during the austral summer.


Assuntos
Baías/química , Lagos/química , Fenômenos Ópticos , Compostos Orgânicos/química , Processos Fotoquímicos , Regiões Antárticas , Geografia , Espectrometria de Fluorescência , Fatores de Tempo , Água/química
12.
Water Res ; 47(15): 5943-53, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23953089

RESUMO

The sunlight filter benzophenone-4 (BP-4) is present in surface waters as two prevailing forms, the singly deprotonated (HA-) and the doubly deprotonated one (A(2-)), with pKa2 = 7.30 ± 0.14 (µ ± σ, by dissociation of the phenolic group). In freshwater environments, BP-4 would mainly undergo degradation by reaction with ·OH and direct photolysis. The form HA(-) has a second-order reaction rate constant with ·OH (k(·OH)) of (1.87 ± 0.31)·10(10) M(-1) s(-1) and direct photolysis quantum yield Φ equal to (3.2 ± 0.6)·10(-5). The form A(2-) has (8.46 ± 0.24)·10(9) M(-1) s(-1) as the reaction rate constant with ·OH and (7.0 ± 1.3)·10(-5) as the photolysis quantum yield. The direct photolysis of HA(-) likely proceeds via homolytic breaking of the O-H bond of the phenolic group to give the corresponding phenoxy radical, as suggested by laser flash photolysis experiments. Photochemical modelling shows that because of more efficient direct photolysis (due to both higher sunlight absorption and higher photolysis quantum yield), the A(2-) form can be degraded up to 3 times faster than HA(-) in surface waters. An exception is represented by low-DOC (dissolved organic carbon) conditions, where the ·OH reaction dominates degradation and the transformation kinetics of HA(-) is faster compared to A(2-). The half-life time of BP-4 in mid-latitude summertime would be in the range of days to weeks, depending on the environmental conditions. BP-4 also reacts with Br2(·-), and a rate constant k(Br2(·-),BP-4) = (8.05 ± 1.33)·10(8) M(-1) s(-1) was measured at pH 7.5. Model results show that reaction with Br2(·-) could be a potentially important transformation pathway of BP-4 in bromide-rich (e.g. seawater) and DOM-rich environments.


Assuntos
Fotoquímica/métodos , Raios Ultravioleta , Água/química , Cinética
13.
Sci Total Environ ; 463-464: 243-51, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23810862

RESUMO

The UV filter benzophenone-3 (BP3) has UV photolysis quantum yield ΦBP3=(3.1±0.3)·10(-5) and the following second-order reaction rate constants: with (•)OH, k(BP3,(•)OH)=(2.0±0.4)·10(10) M(-1) s(-1); with the triplet states of chromophoric dissolved organic matter ((3)CDOM*), K(BP3,(3)CDOM*)=(1.1±0.1)·10(9) M(-1) s(-1); with (1)O2, k(BP3,(1)O2)=(2.0±0.1)·10(5) M(-1) s(-1), and with CO3(-•), k(BP3,CO3(-•))<5·10(7) M(-1) s(-1). These data allow the modelling of BP3 photochemical transformation, which helps filling the knowledge gap about the environmental persistence of this compound. Under typical surface-water conditions, direct photolysis and reactions with (•)OH and (3)CDOM* would be the main processes of BP3 phototransformation. Reaction with (•)OH would prevail at low DOC, direct photolysis at intermediate DOC (around 5 mg C L(-1)), and reaction with (3)CDOM* at high DOC. If the reaction rate constant with CO3(-•) is near the upper limit of experimental measures (5·10(7) M(-1) s(-1)), the CO3(-•) degradation process could be somewhat important for DOC<1 mg C L(-1). The predicted half-life time of BP3 in surface waters under summertime conditions would be of some weeks, and it would increase with increasing depth and DOC. BP3 transformation intermediates were detected upon reaction with (•)OH. Two methylated derivatives were tentatively identified, and they were probably produced by reaction between BP3 and fragments arising from photodegradation. The other intermediates were benzoic acid (maximum concentration ~10% of initial BP3) and benzaldehyde (1%).

14.
Chemosphere ; 90(10): 2589-96, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23273735

RESUMO

Over the last 3-4 decades, Lake Peipsi water (sampling site A, middle part of the lake, and site B, northern part) has experienced a statistically significant increase of bicarbonate, pH, chemical oxygen demand, nitrate (and nitrite in site B), due to combination of climate change and eutrophication. By photochemical modelling, we predicted a statistically significant decrease of radicals ·OH and CO3(-·) (site A, by 45% and 35%, respectively) and an increase of triplet states of chromophoric dissolved organic matter ((3)CDOM(∗); site B, by ∼25%). These species are involved in pollutant degradation, but formation of harmful by-products is more likely with (3)CDOM(∗) than with ·OH. Therefore, the photochemical self-cleansing ability of Lake Peipsi probably decreased with time, due to combined effects of climate change and eutrophication. In different environments (e.g. Lake Maggiore, NW Italy), ecosystem restoration policies had the additional advantage of enhancing sunlight-driven detoxification, suggesting that photochemical self-cleansing would be positively correlated with lake water quality.


Assuntos
Radicais Livres/análise , Água Doce/análise , Lagos/química , Modelos Químicos , Análise da Demanda Biológica de Oxigênio , Estônia , Radical Hidroxila/análise , Nitritos/análise , Processos Fotoquímicos , Análise de Componente Principal , Federação Russa , Estações do Ano , Poluentes Químicos da Água/análise
15.
Chemosphere ; 90(2): 881-4, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23036323

RESUMO

Here we show that fluorescent compounds that could be classified as "M-like" (marine-like) fulvic acids are formed upon phototransformation of phenol by a triplet sensitiser (anthraquinone-2-sulphonate, AQ2S). The relevant process most likely involves phenol oxidation to phenoxyl radical by triplet AQ2S, followed by dimerisation of phenoxyl radicals into phenoxyphenols and dihydroxybiphenyls. It might be the first step of an oligomerization process that bears resemblance with the expected formation pathways of humic-like substances (HULIS) in the atmosphere. Such a process could account for the formation in surface waters of compounds having similar fluorescence properties as "M-like" fulvic acids. Presently it is thought that such species are formed upon photo-fragmentation of larger humic and fulvic acids ("top-down" pathway), and we propose that an opposite, "bottom-up" pathway could also be operational.


Assuntos
Poluentes Atmosféricos/química , Antraquinonas/química , Atmosfera/química , Benzopiranos/química , Água Doce/química , Substâncias Húmicas/análise , Fenóis/química , Benzopiranos/análise , Monitoramento Ambiental , Modelos Químicos
16.
Sci Total Environ ; 439: 299-306, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23085471

RESUMO

The triplet state of anthraquinone-2-sulphonate (AQ2S) is able to oxidise bromide to Br(•)/Br(2)(-•), with rate constant (2-4)⋅10(9)M(-1)s(-1) that depends on the pH. Similar processes are expected to take place between bromide and the triplet states of naturally occurring chromophoric dissolved organic matter ((3)CDOM*). The brominating agent Br(2)(-•) could thus be formed in natural waters upon oxidation of bromide by both (•)OH and (3)CDOM*. Br(2)(-•) would be consumed by disproportionation into bromide and bromine, as well as upon reaction with nitrite and most notably with dissolved organic matter (DOM). By using the laser flash photolysis technique, and phenol as model organic molecule, a second-order reaction rate constant of ~3⋅10(2)L(mg C)(-1)s(-1) was measured between Br(2)(-•) and DOM. It was thus possible to model the formation and reactivity of Br(2)(-•) in natural waters, assessing the steady-state [Br(2)(-•)]≈10(-13)-10(-12)M. It is concluded that bromide oxidation by (3)CDOM* would be significant compared to oxidation by (•)OH. The (3)CDOM*-mediated process would prevail in DOM-rich and bromide-rich environments, the latter because elevated bromide would completely scavenge (•)OH. Under such conditions, (•)OH-assisted formation of Br(2)(-•) would be limited by the formation rate of the hydroxyl radical. In contrast, the formation rate of (3)CDOM* is much higher compared to that of (•)OH in most surface waters and would provide a large (3)CDOM* reservoir for bromide to react with. A further issue is that nitrite oxidation by Br(2)(-•) could be an important source of the nitrating agent (•)NO(2) in bromide-rich, nitrite-rich and DOM-poor environments. Such a process could possibly account for significant aromatic photonitration observed in irradiated seawater and in sunlit brackish lagoons.


Assuntos
Brometos/análise , Água Doce/química , Modelos Químicos , Água do Mar/química , Poluentes Químicos da Água/análise , Antraquinonas/química , Brometos/química , Brometos/efeitos da radiação , Substâncias Húmicas/análise , Substâncias Húmicas/efeitos da radiação , Radical Hidroxila/química , Radical Hidroxila/efeitos da radiação , Nitritos/química , Nitritos/efeitos da radiação , Oxirredução , Fenol/química , Fenol/efeitos da radiação , Fotólise , Luz Solar , Poluentes Químicos da Água/química , Poluentes Químicos da Água/efeitos da radiação
17.
Environ Sci Technol ; 46(15): 8164-73, 2012 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-22795037

RESUMO

It is shown here that carbamazepine (CBZ) would undergo direct photolysis and reaction with (•)OH as the main phototransformation pathways in surface waters. Environmental lifetimes are expected to vary from a few weeks to several months, and predictions are in good agreement with available field data. Acridine (I) and 10,11-dihydro-10,11-trans-dihydroxy-CBZ (V) are the main quantified phototransformation intermediates upon direct photolysis and (•)OH reaction, respectively. The photochemical yield of mutagenic I from CBZ is in the 3-3.5% range, and it is similar for both direct photolysis and (•)OH reaction: it would undergo limited variation with environmental conditions. In contrast, the yield of V would vary in the 4-8.5% range depending on the conditions, because V is formed from CBZ by (•)OH (9.0% yield) more effectively than upon direct photolysis (1.4% yield). Other important photointermediates, mostly formed from CBZ upon (•)OH reaction, are an aromatic-ring-dihydroxylated CBZ (VI) and N,N-bis(2-carboxyphenyl)urea (VII). Compounds VI and VII are formed by photochemistry and are not reported as human metabolites; thus, they could be used as tracers of CBZ phototransformation in surface waters. Interestingly, VI has recently been detected in river water.


Assuntos
Anticonvulsivantes/química , Carbamazepina/química , Água Doce , Modelos Teóricos , Processos Fotoquímicos , Poluentes Químicos da Água/química , Cinética
18.
Photochem Photobiol Sci ; 11(9): 1445-53, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22739678

RESUMO

Anthraquinone-2-sulphonate (AQ2S) is a triplet sensitiser that has recently been used to model the photoreactivity of chromophoric dissolved organic matter (CDOM). We show that the photolysis quantum yield of AQ2S under UVA irradiation varies from (3.4 ± 0.2) × 10(-3) at µM AQ2S levels to (1.8 ± 0.1) × 10(-2) at 3 mM AQ2S (µ±σ). This trend is consistent with a combination of direct phototransformation and transformation sensitised by a photogenerated reactive species. In both cases a transient water adduct of AQ2S would be involved. Depending on the initial quinone concentration, the adduct could undergo transformation, give back ground-state AQ2S or react with it. The prevalence of the latter process at high AQ2S concentration would account for the increased values of the photolysis quantum yield. When using AQ2S as a triplet sensitiser, one should not exceed an initial concentration of 0.1 mM. Under the latter conditions the sensitised process is negligible compared to the direct photolysis, providing a simpler system to be studied, and the photolysis quantum yield is independent of the initial AQ2S concentration. This paper also shows, by adoption of density functional theory calculations, that the triplet state of AQ2S has most of the spin density localised on C[double bond, length as m-dash]O, analogous to other photoactive quinones, which accounts for the oxidising character of the triplet state that tends to be reduced to a semiquinone radical.

19.
Chemosphere ; 88(10): 1208-13, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22575209

RESUMO

The production of triplet states (T(*)) of chromophoric dissolved organic matter (CDOM), reacting with the probe molecule 2,4,6-trimethylphenol (TMP) was measured upon irradiation of water samples, taken from lakes located in a mountain area (NW Italy) between 1450 and 2750 m above sea level. The lakes are located below or above the tree line and surrounded by different vegetation types (trees, alpine meadows or exposed rocks). The most photoactive samples belonged to lakes below the tree line and their fluorescence spectra and CDOM optical features suggested the presence of a relatively elevated amount of humic (allochthonous) material. The lowest (negligible) photoactivity was found for a lake surrounded by exposed rocks. Its CDOM showed an important autochthonous contribution (due to in-lake productivity) and considerably higher spectral slope compared to the other samples, suggesting low CDOM molecular weight and/or aromaticity. Among the samples, CDOM photoactivity (measured as the rate of TMP-reactive T(*) photoproduction) decreased with changing vegetation type in the order: trees, meadows, rocks. It could be connected with decreasing contribution from catchment runoff and increasing contribution from autochthonous processes and possibly precipitation.


Assuntos
Cresóis/química , Lagos/química , Processos Fotoquímicos , Árvores , Água/química , Cor , Análise de Componente Principal , Espectrometria de Fluorescência
20.
Sci Total Environ ; 426: 296-303, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22521169

RESUMO

Anionic 2-nitro-4-chlorophenol (NCP) may occur in surface waters as a nitroderivative of 4-chlorophenol, which is a transformation intermediate of the herbicide dichlorprop. Here we show that NCP would undergo efficient photochemical transformation in environmental waters, mainly by direct photolysis and reaction with OH. NCP has a polychromatic photolysis quantum yield Φ(NCP)=(1.27±0.22)·10(-5), a rate constant with OH k(NCP,)(OH)=(1.09±0.09)·10(10) M(-1) s(-1), a rate constant with (1)O(2)k(NCP,1O2)=(2.15±0.38)·10(7) M(-1) s(-1), a rate constant with the triplet state of anthraquinone-2-sulphonate k(NCP,3AQ2S*)=(5.90±0.43)·10(8) M(-1) s(-1), and is poorly reactive toward CO(3)(-). The k(NCP,3AQ2S*) value is representative of reaction with the triplet states of chromophoric dissolved organic matter. The inclusion of photochemical reactivity data into a model of surface-water photochemistry allowed the NCP transformation kinetics to be predicted as a function of water chemical composition and column depth. Very good agreement between model predictions and field data was obtained for the shallow lagoons of the Rhône delta (Southern France).


Assuntos
Herbicidas/química , Modelos Químicos , Nitrofenóis/análise , Processos Fotoquímicos , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Herbicidas/análise , Cinética , Nitrofenóis/química , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...